
Version 3.2.6

 | Copyright | 1

Copyright

© 2005-2016 Ping Identity® Corporation. All rights reserved.

PingAccess manuals

Version 3.2.6
February, 2016

Ping Identity Corporation
1001 17th Street, Suite 100
Denver, CO 80202
U.S.A.

Trademark

Ping Identity, the Ping Identity logo, PingAccess, PingFederate, and PingOne are registered trademarks of Ping
Identity Corporation (“Ping Identity”). All other trademarks or registered trademarks are the property of their
respective owners.

Disclaimer

The information provided in this document is provided “as is” without warranty of any kind. Ping Identity disclaims
all warranties, either express or implied, including the warranties of merchantability and fitness for a particular
purpose. In no event shall Ping Identity or its suppliers be liable for any damages whatsoever including direct,
indirect, incidental, consequential, loss of business profits or special damages, even if Ping Identity or its suppliers
have been advised of the possibility of such damages. Some states do not allow the exclusion or limitation of liability
for consequential or incidental damages so the foregoing limitation may not apply.

Document Lifetime

Ping Identity may occasionally update online documentation between releases of the related software. Consequently,
if this PDF was not downloaded recently, it may not contain the most up-to-date information. Please refer to the
online documentation at documentation.pingidentity.com for the most current information.

From the web site, you may also download and refresh this PDF if it has been updated, as indicated by a
change on this date: February, 2016.

http://documentation.pingidentity.com/display/LP/Product+Documentation

 | Contents | 2

Contents

Overview and QuickStart Guide...5
PingAccess Overview... 5

Using Virtual Hosts.. 5
Application and Resource Evaluation.. 6
WAM Session Initiation... 6
Token Mediation...7
Server-Side Session Management.. 8
Using the OAuth Authorization Server..8

Downloading and Installing the QuickStart Demo Application.. 9
About the PingAccess Quickstart Demo App..9
Download and Install the Quickstart Application..9

PingAccess Administrator's Guide... 10
System Tasks.. 10

Installation and Intial Setup..10
Clustering.. 17
Configuring Logging.. 20
Accessing PingAccess Interfaces... 26
Performance Tuning..27
Upgrading PingAccess..32
Restore a PingAccess Configuration Backup...38

Applications...38
Configure an Application... 38
Configure a Resource... 39
Configure a Resource... 40

Sites & Agents..40
Sites... 40
Site Authenticators..42
Agents..44

Policy Manager... 46
Rules..46
Rule Sets... 57
Application.. 58

Settings.. 58
Access..58
Networking..68
Security..72
System... 75

PingAccess Deployment Guide.. 84
Use Cases and Deployment Architecture...84

Deploying for Gateway Web Access Management... 84
Deploying for Agent Web Access Management..85
Deploying for Gateway API Access Management.. 85
Deploying for Auditing and Proxying... 86

Configuration by Use Case.. 86
Web Access Management Gateway Deployment.. 87

 | Contents | 3

Web Access Management Agent Deployment...87
API Access Management Gateway Deployment... 88
Auditing and Proxying Gateway Deployment... 89

Web Access Management.. 89
Choosing Between an Agent or Gateway Deployment... 89
Web Access Management Gateway Proof Of Concept Deployment Architecture................................ 90
Web Access Management Gateway Production Deployment Architecture... 91
Web Access Management Agent Proof Of Concept Deployment Architecture.................................... 93
Web Access Management Agent Production Deployment Architecture... 94

API Access Management Proof of Concept Deployment Architecture...95
API Access Management Production Deployment Architecture... 96
Auditing and Proxying Proof of Concept Deployment Architecture...97
Auditing and Proxying Production Deployment Architecture...98

Customization and Development.. 100
Customize User-Facing Pages.. 100
PingAccess Endpoints...101

Heartbeat Endpoint... 101
OpenID Connect Endpoints..103
Administrative API Endpoints..103

Groovy...104
Groovy...104
Groovy Scripts.. 104
Body Object.. 106
Exchange Object... 106
Header Object... 108
Method Object.. 109
OAuth Token Object.. 110
PolicyContext Object.. 111
Request Object.. 111
Response Object..112
Groovy Script Examples...113
Matchers.. 114

PingAccess Addon SDK for Java.. 117
Preface... 117
Introduction... 117
Getting Started With the SDK... 118
Creating your own Plugins...120
Implementation Guidelines... 121

PingAccess Agent SDK for Java... 122
Preface... 122
Introduction... 122
Getting Started with the PingAccess Agent SDK for Java..123
PingAccess Agent SDK for Java Release History...125

Reference Information..126
Admin Properties.. 126
Admin and Engine Cluster Settings... 126
Administrative Console Settings.. 127
Agent Properties..128
Auditing Settings.. 128
Availability Profile Defaults...128
Cluster Configuration Settings... 129
Configuration Database and Keystore Settings..131

 | Contents | 4

EHCache Configuration Properties.. 131
Engine Properties.. 132
Engine Properties File.. 132
POST Preservation Properties.. 133
Security Headers Properties..133
Server-Side Session Management Configuration Settings...135
URL Filtering Settings..135

Release Notes... 136
Enhancements for the 3.2 Release... 136
Known Issues..137
Upgrading from an earlier PingAccess 3.2 release..138
Complete Change List by Released Version... 138

PingAccess 3.2.6 - February, 2016.. 138
PingAccess 3.2.5 - December, 2015.. 139
PingAccess 3.2.4 - December, 2015.. 139
PingAccess 3.2.3 - October, 2015..139
PingAccess 3.2.2 - August, 2015... 140
PingAccess 3.2.1 - July, 2015..141
PingAccess 3.2 - June, 2015.. 141
PingAccess 3.1 - February, 2015... 142
PingAccess 3.0 R2 - October, 2014...143
PingAccess 3.0.3 - November, 2014..144
PingAccess 3.0.2 - September, 2014..144
PingAccess 3.0.1 - August, 2014... 144
PingAccess 3.0 - July, 2014...144
PingAccess 2.1.4 – June 2014..144
PingAccess 2.1.3 - May 2014.. 145
PingAccess 2.1.2 – April 2014.. 145
PingAccess 2.1.1 – March 2014.. 145
PingAccess 2.1 - December 2013.. 145
PingAccess 2.0.1 - October 2013...145
PingAccess 2.0 - September 2013..145
PingAccess 1.0 - April 2013.. 145

 | Overview and QuickStart Guide | 5

Overview and QuickStart Guide

PingAccess Overview
PingAccess is an identity-enabled access management product that protects Web Applications and APIs by applying
security policies to client requests. It works in conjunction with PingFederate to integrate identity-based access
management policies using a federated corporate identity store using open standards access protocols.

Access requests are either routed through a PingAccess Gateway to the target Site, or they are intercepted at the target
web application server by a PingAccess Agent, which in turn coordinates access policy decisions with a PingAccess
Policy Server. In either instance, policies applied to access requests for the target Application are evaluated, and
PingAccess makes a policy-based decision to grant or deny access to the requested resource. When access is granted,
client requests and server responses can be modified to provide additional identity information required by the target
Application.

Using Virtual Hosts

Virtual Hosting enables you to host multiple server or domain names. This allows one server to share resources
without requiring all sites on the server to use the same host name. For example, you may want to use multiple names
on the same server so that each site name reflects the services offered rather than the actual server name where those
sites are hosted.

PingAccess supports virtual hosting by serving requests bound for a set of defined server names and mapping them to
requested applications. The target host header presented by the client can optionally be rewritten with the appropriate
back-end host name. For example, say the host configured for Site One is hr121.internal:80. You configure
Application One to use a virtual host of hr.mycompany.com:80. You associate Site One with Application One.

 | Overview and QuickStart Guide | 6

PingAccess listens for incoming requests for the site at hr.mycompany.com:80. When a client request comes in
to hr.mycompany.com:80, PingAccess sees the request, looks at the name of the domain configured for the back-
end site, and replaces the target Host header with hr121.internal:80.

Supporting HTTPS requests causes additional complexity due to the need for SSL/TLS certificates. Prior to
availability of SNI in Java 8, an HTTPS port could only present a single certificate. In order to handle multiple Virtual
Hosts you have to use a wildcard name certificate or the Subject Alternative Name (SAN) extension. With SNI
available, Virtual Hosts can present different certificates on a single HTTPS port. You can assign which certificates
(Key Pairs) are used by which Virtual Host on the HTTPS Listeners page - see HTTPS Listeners.

Application and Resource Evaluation

Applications represent Web applications or APIs to which a request is sent. They are defined by a context root
and virtual server which must be unique. The context root is the first part of the URL path, starting with a slash (/)
and can be arbitrarily long or deep - that is, it can contain any number of slashes. No wildcards are allowed in the
context root. For example, /myApp or /hrApps/appOne. When a request comes in, PingAccess needs to identify
the application for the request by matching the request URL prefix against the defined applications. If two or more
application context roots start with the same string, PingAccess will match the longest (and therefore most specific)
context root first. For example, if App1 has context root /hrApps and App2 has context root /hrApps/myApp,
then a request with URL /hrApps/myApp/page1 will match App2.

Resources represent parts of the application URL space beyond the context root that have distinct security
requirements. All applications have the default Root Resource which corresponds to all URLs not handled by other
resources. Any number of additional resources can be defined. Each resource can specify an arbitrary number of URL
path prefixes which may contain wildcards.

Resources can be defined in any order, as ordering is not used to determine precedence. Instead, the match that is the
most specific for the requested URL path prefix is used to determine which resource was requested.

For example, suppose we have application called App1 with a Context Root of "/" and the following resources:

• Res1 with a path prefix of /foo
• Res2 with a path prefix of /*/bar
• Root Resource with the default path prefix /

If a user requests the resource at /foo/bar, PingAccess would identify the requested resource as Res2 and make
policy decisions based on that identification.

In addition, resources that are associated with an API Application Type can be defined based on the method used with
the URL. For example, suppose we have an Application called App2 defined with the following resources:

• Res3 with a path prefix of /foo
• Res4 with a prefix path of /*/bar for the GET method
• Res5 with a prefix path of /*/bar for the PUT method

If a user requests /foo/bar using a GET method, PingAccess would identify the requested resource as Res4 and
make policy decisions based on that identification. A request to /foo/bar using a PUT method, however, would
result in PingAccess identifying the requested resource as Res5.

WAM Session Initiation

Once a user authenticates, PingAccess applies the application and resource-level policies to the request. Once policy
evaluation is passed, any required token mediation between the back-end Site and the authenticated user is performed.
The user is then granted access to the Site

 | Overview and QuickStart Guide | 7

Processing Steps:

1. When a user requests a Web resource from PingAccess, PingAccess inspects the request for a PA Token.
2. If the PA Token is missing, PingAccess redirects the user to an OpenID Connect Provider (OP) for authentication.

Info: When using an OP, an OAuth Client must already be configured in PingAccess. For steps on
configuring an OAuth Client within PingFederate, see Configuring a Client. To then configure that OAuth
Client within PingAccess, see the Web Session section on the PingFederate page.

3. The OP follows the appropriate authentication process, evaluates domain-level policies, and issues an OpenID
Connect (OIDC) ID Token to PingAccess.

4. PingAccess validates the ID Token and issues a PA Token and sends it to the browser in a cookie during a
redirect to the original target resource. Upon gaining access to the resource, PingAccess evaluates application and
resource-level policies and optionally audits the request.

Info: PingAccess can perform Token Mediation by exchanging the PA Token for the appropriate security
token from the PingFederate STS or from a cache (if token mediation occurred recently).

5. PingAccess forwards the request to the target site.
6. PingAccess processes the response from the site to the browser (step not shown).

Info: See the Web Sessions section for more information.

Token Mediation

When planning a PingAccess deployment, it is necessary to take stock of existing applications and their authentication
requirements and mechanisms. When an existing token-based authentication mechanism is in use, retrofitting that
mechanism may not always be desirable or cost-effective.

Token Mediation allows a PingAccess gateway to use a PingFederate token generator to exchange the PA Token
or an OAuth Bearer Token for a security token used by the foreign authentication system. The access request is
transparent to the user, allowing PingAccess to transparently manage access to systems using those foreign tokens.
The request is also transparent to the protected application, which handles the access request as if it came from the
user directly. Once token mediation has occurred, the token used for accessing the application is cached for future use
during the session.

The following illustration shows an example of token mediation using PingFederate to exchange a PA Token or
OAuth Bearer Token for a different security token.

http://documentation.pingidentity.com/pingfederate/pf/?contextId=help_OAuthClientManagementTasklet_OAuthClientManagementState

 | Overview and QuickStart Guide | 8

Processing Steps:

1. A user requests a Resource from PingAccess with a PA Token or OAuth Bearer Token.

Info: This example assumes the user has already obtained a PA Token or OAuth Bearer Token. See Web
Access Management or Using the OAuth Authorization Server for details on how users authenticate with
PingFederate and obtain a PA Token or OAuth Bearer Token.

2. PingAccess evaluates resource-level policies and performs token mediation by acquiring the appropriate security
token from the PingFederate STS specified by the Site Authenticator.

3. PingAccess sends the request to the Site (Web application) with the appropriate token.
4. PingAccess returns the response to the client (not shown).

Server-Side Session Management

The server-side session management feature allows for tighter session control, leveraging the single logout
capabilities provided by PingFederate 7.2. The ability to enforce single logout enables the following scenarios:

1. PingAccess can reject a PingAccess cookie associated with a session that has been typically based on end user
driven logout.

2. The end user can initiate a logout from all PingAccess issued web sessions using a centralized logout.

This feature performs a validation check with PingFederate when protected resources are served. The OpenID
Connect option must be enabled in the OAuth 2.0 Authorization Server (AS) role, and access to the OpenID Connect
session revocation API must be enabled.

Using the OAuth Authorization Server

PingAccess supports the Bearer Token Security Model and the Validation Grant Type extension grant and uses an
OAuth AS in the following ways:

• Works with OAuth Authorization Servers such as the PingFederate OAuth AS to authorize access to protected
Resources.

• Protects applications by requiring an OAuth bearer access token (see Section 2.1 of RFC 6750 for supported token
transport details).

• Acts as an OAuth Resource Server, requesting validation from the OAuth AS for the bearer access token it
receives from a client making a protected-resources call. The OAuth AS validates the access token and sends
token attributes to PingAccess, which evaluates the returned OAuth details against policies set in the Applications
section of the Policy Manager.

• Grants access to a Resource based on the use of Rules in combination with the OAuth AS validation.

http://documentation.pingidentity.com/pingfederate/pf/?contextId=concept_tokenModelsAndManagement
http://documentation.pingidentity.com/pingfederate/pf/?contextId=concept_grantTypes
http://documentation.pingidentity.com/pingfederate/pf/?contextId=concept_aboutOauth
http://tools.ietf.org/html/rfc6750#section-2.1

 | Overview and QuickStart Guide | 9

Downloading and Installing the QuickStart Demo Application

About the PingAccess Quickstart Demo App

The PingAccess Quickstart Application is a pre-packaged web application and PingAccess/PingFederate
configuration that can be used to explore the features and functionality of PingAccess.

The configuration runs on your local system. In order to use the QuickStart Application, you will need a PingAccess
license to use the Quickstart Application. Request a License Key from Ping Identity to get started.

Download and Install the Quickstart Application

1. Navigate to the Ping Identity Product Downloads page and download both PingFederate and PingAccess.
2. From the same page, download the PingAccess Quickstart Demo App
3. Unzip the PingAccess Quickstart Demo App zip file, then open pingaccess-quickstart-<version>/

ReadMeFirst.pdf

4. Follow the setup instructions included in the PDF to install the Quickstart environment

https://www.pingidentity.com/en/products/request-license-key.html
https://www.pingidentity.com/en/products/downloads.html

 | PingAccess Administrator's Guide | 10

PingAccess Administrator's Guide

The PingAccess Administrator's Guide provides comprehensive reference information about configuring PingAccess.

System Tasks

Installation and Intial Setup

System Requirements

PingAccess is certified as compatible for deployment and configuration with the minimum system specifications
defined below.

Software Requirements

Ping Identity has qualified the following configurations and certified that they are compatible with the product.
Variations of these platforms (for example, differences in operating system version or service pack) are supported up
until the point at which an issue is suspected as being caused by the platform or other required software.

Operating Systems

Info: PingAccess has been tested with default configurations of operating system components. If your
organization has customized implementations or has installed third-party plug-ins, deployment of the
PingAccess server may be affected.

• Microsoft Windows Server 2008 R2 SP1
• Microsoft Windows Server 2012 Standard
• Microsoft Windows Server 2012 R2 Datacenter
• Red Hat Enterprise Linux ES 6.6
• Red Hat Enterprise Linux ES 7.0
• SUSE Linux Enterprise 11 SP3

Virtual Systems

Although Ping Identity does not qualify or recommend any specific virtual-machine (VM) products, PingAccess has
been shown to run well on several, including VMWare, Xen, and Windows Hyper-V.

Info: This list of products is provided for example purposes only. We view all products in this category
equally. Ping Identity accepts no responsibility for the performance of any specific virtualization software and
in no way guarantees the performance and/or interoperability of any VM software with its products.

Java Runtime Environment

• Oracle Java 7 update 75 (64-bit)
• Oracle Java 8 update 31 (64-bit)

Supported PingFederate

• PingFederate 7.3
• PingFederate 8.0

Supported Browsers for End Users

• Chrome

 | PingAccess Administrator's Guide | 11

• Firefox
• Safari
• Internet Explorer 8 and higher
• Android 5.0
• iOS 8

Supported Browsers for Admin Console

• Chrome
• Firefox
• Internet Explorer 9 and higher

Audit Event Storage (External Database)

• Oracle 11g R2

Hardware Requirements

Info: Although it is possible to run PingAccess on less powerful hardware, the following guidelines
accommodate disk space for default logging and auditing profiles and CPU resources for a moderate level of
concurrent request processing.

Minimum Hardware Requirements

• 4 CPU/Cores
• 2 GB of RAM
• 2.1 GB of available hard drive space

Minimum Hardware Recommendations

• Multi-CPU/Cores (8 or more)
• 4 GB of RAM
• 2.1 GB of available hard drive space

Port Requirements

The following table summarizes the ports and protocols that PingAccess uses to communicate with external
components. This information provides guidance for firewall administrators to ensure the correct ports are available
across network segments.

Info: Direction refers to the direction of requests relative to PingAccess. Inbound requests are requests
received by PingAccess from external components. Outbound requests are requests sent by PingAccess to
external components.

Service
(Type of
Traffic)

Protocol TCP/UDP Default Port Source Destination Direction Description

PingAccess
Administrative
Console

HTTPS TCP 9000 PingAccess
Administrator
browser,
PingAccess
administrative
API REST
calls,
PingAccess
Replica
Admin and

PingAccess
Administration
Engine

Inbound Used for
incoming
requests
to the
PingAccess
administrative
console.
Configurable
using the
admin.port

 | PingAccess Administrator's Guide | 12

Service
(Type of
Traffic)

Protocol TCP/UDP Default Port Source Destination Direction Description

clustered
Engine
nodes

property
in the
run.properties
file.

This port is
also used
by clustered
engine
nodes and
the replica
admin node
to pull
configuration
data using
the admin
REST API.

PingAccess
Engine

HTTP/
HTTPS

TCP 3000 1 Client
Browser,
Mobile
Devices,
PingFederate
Engine

PingAccess
Engine

Inbound Used for
incoming
requests
to the
PingAccess
runtime
engine.
Configurable
using the
Listeners on
page 69
configuration
page.

PingAccess
Agent

HTTP TCP 3030 PingAccess
Agent

PingAccess
Engine

Inbound Used for
incoming
Agent
requests
to the
PingAccess
runtime
engine.
Configurable
using the
agent.http.port
property
of the
run.properties
file.

PingFederate
Traffic

HTTPS TCP 9031 PingAccess
Engine

PingFederate Outbound Used to
validate
OAuth
Access
Tokens,
ID Tokens,

 | PingAccess Administrator's Guide | 13

Service
(Type of
Traffic)

Protocol TCP/UDP Default Port Source Destination Direction Description

make STS
calls for
Identity
Mediation,
and return
authorized
information
about a user.
Configurable
using the
PingFederate
Settings
page within
PingAccess.

PingAccess
Cluster
Traffic

JGroups TCP 7610 PingAccess
Engine

PingAccess
Engine

Inbound Used for
communications
between
engine nodes
in a cluster.
Configurable
using the
run.properties
file.

PingAccess
Cluster
Traffic

JGroups TCP 7710 PingAccess
Engine

PingAccess
Engine

Inbound Used by
other nodes
in the cluster
as part of
the cluster's
failure-
detection
mechanism.
Configurable
using the
run.properties
file.

PingAccess
Cluster
Traffic

JGroups UDP 7500 PingAccess
Engine

PingAccess
Engine

Inbound Used by
other nodes
in the same
cluster
to share
information.
Configurable
using the
run.properties
file.

1. In addition to port 3000, additional engine listener ports defined in the Listeners on page 69 configuration
need to be open as well.

 | PingAccess Administrator's Guide | 14

Installing the Oracle JDK

The 64-bit Oracle JDK provides the supported environment for PingAccess. See System Requirements on page 10
for information about which JDK versions are supported.

Info: You must install the Oracle JDK before installing PingAccess.

To install the Oracle JDK for Windows and Linux:

1. Download and install Oracle JDK from http://www.oracle.com/technetwork/java/javase/downloads/index.html.
2. Set the JAVA_HOME environment variable to the JDK installation directory path. Set the variable at either the

system or user level.
3. Add the JDK /bin directory path to the beginning of the PATH variable for your platform so it is available for

scripts that depend on it.

Installing PingAccess

Prior to starting the installation, the following prerequisites must be met:

• Ensure you are logged on to your system with appropriate privileges to install and run an application.

Note: On Linux, we recommend that you install and run PingAccess as a non-root user.

• The Oracle JDK must be installed and the JAVA_HOME and PATH variables are set correctly (see Install the
Oracle JDK).

• You must have a pingaccess.lic license file. If you do not have one, you can request an evaluation key at
the Request a License Key page (www.pingidentity.com/content/pic/en/products/request-
license-key.html).

1. Extract the distribution ZIP file into your installation directory.
2. Copy your license key file to <PA_HOME>/conf/pingaccess.lic.

Note: PingAccess will not start without a valid license key file.

Tip: If you are deploying PingAccess in a cluster configuration, see Configure PingAccess Servers into a
Cluster.

Change Configuration Database Passwords

The PingAccess configuration database is protected by two passwords - a file password and a user password. These
passwords both default to 2Access, but should be changed for production environments.

Changing either password requires PingAccess be shut down.

1. Open a terminal window and change to the <PA_HOME>/bin directory.
2. Ensure that the JAVA_HOME environment variable is set correctly by executing the command echo

$JAVA_HOME.
3. Ensure that the proper Oracle Java executable is in your path. Enter the command java -version. If this

command returns a value indicating that the Java executable is not a supported version of Oracle Java, correct this
issue before continuing.

4. Shut down PingAccess.
5. Optional: (Optional) To change the database file password, use the following commands:

• On Windows: dbfilepasswd.bat old_password new_password
• On Linux: ./dbfilepasswd.sh old_password new_password

6. Optional: Conditional: If you changed the database file password, update the pa.jdbc.filepassword
property in <PA_HOME>/conf/run.properties with the obfuscated password output from the command
used in the preceding step.

7. Optional: (Optional) To change the database user password, use the following commands:

• On Windows: dbuserpasswd.bat file_password old_password new_password

http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.pingidentity.com/en/products/request-license-key.html

 | PingAccess Administrator's Guide | 15

• On Linux: ./dbuserpasswd.sh file_password old_password new_password
8. Optional: Conditional: If you changed the database user password, update the pa.jdbc.password property

in <PA_HOME>/conf/run.properties with the obfuscated password output from the command used in the
preceding step.

Starting and Stopping PingAccess
Starting PingAccess

1. In a command prompt or terminal window, change to the PingAccess bin directory:

• On Linux: cd <PA_HOME>/bin
• On Windows: cd <PA_HOME>\bin

2. Start the run script for the platform:

• On Linux: ./run.sh
• On Windows: run.bat

Wait for the script to execute. PingAccess is started when you see the message “PingAccess running...” in the
command window.

Stopping PingAccess

1. Press Ctrl+C in the command-prompt or terminal window.
2. Conditional: If PingAccess is running on Windows, press y when prompted to terminate the script.

Running PingAccess for the First Time

1. Start PingAccess by running the following script:

• On Windows: <PA_HOME>\bin\run.bat
• On Linux: <PA_HOME>/bin/run.sh

Info: The run.sh script requires bc, the GNU command line calculator. To install bc on SUSE Linux
Enterprise Server, execute the following command: zypper install bc.

2. Wait for the script to finish the start up. The server is started when you see the message “ PingAccess
running...” in the command window.

Info: If you are using the PingAccess Quick-Start Application, at this point there are additional
initialization steps required to complete your setup. See the Quick-Start Application's ReadMeFirst for
more information.

Info: If you have not yet installed a PingAccess license, the server does not start up (see Install
PingAccess for information on obtaining a license).

3. Launch your browser and go to: https://<DNS_NAME>:9000
<DNS_NAME> is the fully-qualified name of the machine running PingAccess.

4. Sign in with the default username and password:

Username: Administrator

Password: 2Access
5. Read and accept the license agreement.
6. Change the default administrator password on the First Time Login page, then click Continue.

Info: The new password must conform to the rules specified by the
pa.admin.user.password.regex property in run.properties.

The PingAccess administrative console appears.

 | PingAccess Administrator's Guide | 16

Running PingAccess as a Service
Running PingAccess as a Linux Service

PingAccess can run as a Linux service. This enables PingAccess to start automatically when Linux is started or
rebooted. The service runs as root user by default, or a specific user if specified.

Tip: Before performing this procedure, ensure that PingAccess runs normally by manually starting the
server. See Run PingAccess for the First Time for more infomation.

Configuring PingAccess to Run as a Linux Service

Note: The service script will only start if JAVA_HOME and PA_HOME are set and the PingAccess license
file is found.

1. Copy the PingAccess script file from <PA_HOME>/sbin/linux/pingaccess to /etc/init.d.
2. (Optional) Create a new user to run PingAccess.
3. Create the folder /var/run/pingaccess and ensure that the user who will run the service has read and write

permission to the folder.
4. Edit the script file /etc/init.d/pingaccess and set the values of following variables at the beginning of

the script:

• export JAVA_HOME= specify the Java install folder
• export PA_HOME= specify the PingAccess install folder
• export USER= (optional) specify user name to run the service, or leave empty for default

5. Register the service by running the command "chkconfig --add pingaccess" from the /etc/init.d
folder.

6. Make the service script executable by running the command "chmod +x pingaccess"

Once registered, you can use the service command to control the pingaccess service. The available commands are:

start
Start the PingAccess Service

stop
Stop the PingAccess Service

restart
Restart the PingAccess Service

status
Show the status of the PingAccess service and the service PID

The command service pingaccess status displays the current status of the running
PingAccess service.

Configuring Multiple Instances of PingAccess as Linux Services

For hosts running multiple instances of PingAccess that need to be started as a service, follow the procedure used for
Running PingAccess as a Linux Service, but make the following modifications to the script for each service:

• Use a unique script name for each instance
• Use a separate directory structure for each instance in the filesystem
• Configure the following settings in the script file for each instance:

• APPNAME: A unique value for each instance
• PA_HOME: The path to the PingAccess instance
• JAVA_HOME: The path to the Java installation folder
• USER: Optional value for the user name used to run the service

Removing the PingAccess Linux Service

Note: The following commands must be run as the root user.

 | PingAccess Administrator's Guide | 17

1. Stop the service by running /etc/init.d/pingaccess stop.
2. Run chkconfig --delete pingaccess.
3. (Optional) Delete the /etc/init.d/pingaccess script

Running PingAccess as a Windows Service

You can set up PingAccess to run in the background as a service on Windows running 64-bit processors.

Configuring PingAccess to Run as a Windows Service

Info: Before performing this procedure, ensure that PingAccess runs normally by manually starting the
server (see Run PingAccess for the First Time).

This configuration allows you to start PingAccess automatically when Windows starts.

1. Install PingAccess.

Info: Ensure JAVA_HOME is set as a system variable (see Install the Oracle JDK).

2. Ensure you are logged on with full Administrator privileges.
3. Start a Command Prompt as an Administrator.
4. In the Command Prompt, run install-service.bat. This script is located in <PA_HOME>\sbin

\windows.
5. Open the Windows Control Panel > Administrative Tools > Services.
6. Right-click PingAccess Service from the list of available services and select Start. The service starts immediately

and restarts automatically on reboot. (You can change the default Start type setting in the Properties dialog.)

Removing the PingAccess Windows Service

To remove the PingAccess Windows Service, perform the following steps as an Administrator:

1. Open a Command Prompt
2. Change the current directory to <PA_HOME>\sbin\windows
3. Run uninstall-service.bat
4. When the script has finished, remove the PA_HOME enviornment variable from the system.

Uninstalling PingAccess

1. Shut down PingAccess. (see Start and Stop PingAccess).
2. Delete the PingAccess installation directory.

Clustering

PingAccess can be configured in a clustered environment to provide higher scalability and availability for critical
services. While it is important to understand that there may be tradeoffs between availability and performance,
PingAccess is designed to operate efficiently in a clustered environment.

PingAccess clusters are made up of three types of nodes:

Administrative Console
Provides the administrator with a configuration interface

Replica Administrative Console
Provides the administrator with the ability to recover a failed administrative console using a manual failover
procedure.

Clustered Engine
Handles incoming client requests and evaluates policy decisions based on the configuration replicated from the
administrative console

A load balancer is typically used to distribute the load amongst the nodes in the cluster.

 | PingAccess Administrator's Guide | 18

Any number of clustered engines can be configured in a cluster, but only one administrative console and one replica
administrative console can be configured in a cluster.

The engines and replica administrative console use a pull replication model to periodically obtain configuration
updates. State information replication is not part of a default cluster configuration, but some state information can be
replicated using PingAccess subclusters.

PingAccess Subclusters

Subclusters are a method to provide better scaling of very large PingAccess deployments by allowing multiple engine
nodes in the configuration to share certain information. Place an additional load balancer in front of each subcluster
distribute connections to the nodes in the subcluster.

Subclusters serve three purposes:

• Providing fault-tolerance for mediated tokens if a cluster node is taken offline.
• Reducing the number of STS transactions with PingFederate when the front-end load balancer does not provide a

sticky session.
• Ensure rate limits are enforced properly if the front-end load balancer does not provide a sticky session.

If token mediation and rate limiting are not used in your environment, subclustering is not necessary.

Info: This cache can be tuned using the EHCache Configuration Properties listed in the Configuration
Properties documentation.

Configure a PingAccess Cluster

Prior to configuring your cluster, PingAccess should be set up as a STANDALONE server. The initial node becomes
the primary administrative console, and is used to configure the rest of the cluster.

1. Install PingAccess on each cluster node
2. Navigate to Settings > System > Clustering and define the Primary Administrative Node as a host:port pair.

The host must be a resolvable DNS name for the node or the node's IP address. The port is the TCP port
PingAccess listens to for the administrative interface. The default port is 9000.

3. If a replica administrative node will be used in the cluster, perform the following steps:
a) Define a host:port pair for the replica node.
b) Click to download the replica administrative node configuration file.
c) Copy the downloaded replica1_data.zip file to the replica administrative node.

 | PingAccess Administrator's Guide | 19

Note: If a replica administrative node is added after the cluster has been deployed, it will be necessary to
update the configuration for each engine node when the replica administrative node is added.

4. Navigate to Settings > Security > Key Pairs and create a new key pair to assign to the ADMIN listener. The key
pair needs to be valid for both the primary and replica administrative nodes.

Tip: If a replica administrative node is not defined during the initial cluster configuration, you might still
opt to define a subject alternative name for a future replica administrative node. This avoids having to
reissue the keys when adding the replica administrative node in the future.

5. Navigate to Settings > Networking > Listeners and assign the newly created key pair to the ADMIN listener.
6. Open conf/run.properties in an editor and change the pa.operational.mode value to

CLUSTERED_CONSOLE.
7. Restart PingAccess on the administrative node.
Perform steps 8-10 on the replica administrative node, if one has been configured.
8. Unzip replica1_data.zip in the PA_HOME directory.

Note: This zip file contains configuration files that may overwrite existing files on the system. If you are
prompted to overwrite files, answer Yes.

9. Open conf/run.properties in an editor and change the pa.operational.mode value to
CLUSTERED_CONSOLE_REPLICA

10. Start PingAccess on the replica administrative node.
For each engine node, perform steps 11-16.
11. Navigate to Settings > System > Clustering and click New Engine.
12. After defining the engine's parameters, click Save & Download to download the engine configuration zip file.
13. Copy engine_name_data.zip to the engine node.
14. On the engine node, unzip engine_name_data.zip in the PA_HOME directory.

Note: This zip file contains configuration files that may overwrite existing files on the system. If you are
prompted to overwrite files, answer Yes.

15. On the engine node, open conf/run.properties in an editor and change the pa.operational.mode
value to CLUSTERED_ENGINE.

16. Start PingAccess on the engine node.

Navigate to Settings > System > Clustering to check your cluster's status. If everything is configured properly, the
cluster engine nodes and optional replica administrative node should show a green status icon, indicating that the
cluster is operational.

You can optionally configure each node to run PingAccess as a service set to automatically run when the node is
started. For more information about configuring PingAccess as a service, see Configuring PingAccess to Run as
a Linux Service on page 16 or Configuring PingAccess to Run as a Windows Service on page 17 for more
information.

Configure PingAccess Subclusters

1. Modify <PA_HOME>/conf/run.properties and change the
pa.cluster.interprocess.communication value from none to either tcp or udp.

Info: Using UDP for the interprocess communication allows a multicast group to be used for this
communication, which for a larger subcluster may be more efficient.

2. Conditional: If TCP is used for interprocess communication, configure the
pa.cluster.tcp.discovery.initial.hosts value to specify a list of initial hosts to contact for group
discovery.

3. Conditional: If UDP is used for interprocess communication, optionally configure the
pa.cluster.mcast.group.address and pa.cluster.mcast.group.port values for each
subcluster.

 | PingAccess Administrator's Guide | 20

4. Update the pa.cluster.bind.address with the IP address of the network interface that should handle the
interprocess communication traffic for the cluster.

5. Place a load balancer in front of each subcluster to distribute the load across the subcluster nodes.
6. Restart the engine nodes.

Manually Fail Over to the Replica Administrative Node

The Replica Administrative Node is intended to be used for disaster recovery purposes. If the clustered console is
recoverable, then that recovery should be used rather than failing over to the Replica Administrative Node.

Warning: Only one primary administrative node should be running for the cluster at any given time.

1. Open <PA_HOME>/conf/run.properties in an editor.
2. Locate the pa.operational.mode line and change the value from CLUSTERED_CONSOLE_REPLICA to

CLUSTERED_CONSOLE

This change is detected while the node is running, and does not require a restart of the node.

Reinstating a Replica Administrative Node after Failing Over

Once the console has been failed over to the replica, you need to set up a new replica console again.

1. Install the new replica node.
2. Change the run.properties value for pa.operational.mode to CLUSTERED_CONSOLE_REPLICA
3. Go to Settings | Clustering and change the Primary Administrative Node hostname and port to the failed over

node.
4. Remove the Replica Administrative Node public key, then change the Replica Administrative Node hostname

and port to point to the new replica node.

Tip: If your key pair does not include a wildcard, you will want to use the same hostname as the original
console in order to avoid having to recreate the console key pair and the bootstrap.properties files for each
engine.

5. Click the download icon next to the SAVE button to download the bootstrap file for the replica administrative
node.

6. Copy the downloaded file to the new replica administrative node's <PA_HOME>/conf directory, and rename it
to bootstrap.properties

7. Edit <PA_HOME>/conf/run.properties on the new replica administrative node and change the
pa.operational.mode value to CLUSTERED_CONSOLE_REPLICA

8. Start the new replica node
9. You can verify replication has completed by monitoring the <PA_HOME>/log/pingaccess.log file and

looking for the message "Configuration successfully synchronized with administrative node"

If you want to then switch back to the original console, shut down the original replica node, and fail over back to the
newly created replica console. Follow the above steps a second time to re-establish the original replica node.

Configuring Logging

Security Audit Logging

The PingAccess audit logs record a selected subset of transaction log information at runtime plus additional details,
intended to facilitate security auditing and regulatory compliance. The logs are located in the /logs directory
of your PingAccess installation. Elements of the logs are described in the table below and configurable in the
blitz4j.properties file located in <PA_HOME>/conf.

PingAccess generates these logs that document server events:

• pingaccess_engine_audit.log--Records transactions of configured Resources. Additionally, the log records
transaction details when PingAccess sends requests to PingFederate (for example, STS, OAuth2, JWS).

 | PingAccess Administrator's Guide | 21

• pingaccess_api_audit.log--Records PingAccess administrative API transactions. These transactions represent
activity in the PingAccess administrative console. This log also records transaction activity if you are using scripts
to configure PingAccess.

Audit Log Configuration

Item Description

%d Transaction time.

exchangeId Identifies the ID for a specific request/response pair.

AUDIT.authMech Mechanism used for authentication. Engine Auditing -
Cookie (WAM session), OAuth, unknown (for example,
pass-through or static assets). Pass-through assets are
Resources with no policies or Web session configured.
Admin Auditing - Basic, OAuth, Cookie, unknown (
unknown displays only in an authentication failure).

AUDIT.client IP address of the requesting client.

AUDIT.failedRuleName Name of the Rule that failed. If no Rule failure occurred,
this field is blank. This element is applicable only to the
pingaccess_engine_audit.log.

AUDIT.failedRuleType Type of Rule that failed. If no Rule failure occurred,
this field is blank. This element is applicable only to the
pingaccess_engine_audit.log.

AUDIT.failedRuleClass The Java class of Rule that failed. If no Rule failure
occurred, this field is blank. This element is applicable
only to the pingaccess_engine_audit.log.

AUDIT.failedRuleSetName Name of the containing Rule Set that failed. If no Rule
failure occurred, this field is blank. This element is
applicable only to the pingaccess_engine_audit.log.

AUDIT.host PingAccess host name or IP address.

AUDIT.targetHost Backend target that processed the request and generated
a response to the PingAccess engine.

AUDIT.method HTTP method of the request. For example, GET.

AUDIT.resource Name of the Resource used to fulfill the
request. This element is applicable only to the
pingaccess_engine_audit.log.

AUDIT.responseCode HTTP status code of the response. For example, 200.

AUDIT.requestUri Request URI portion of the request (for example, /foo/
bar).

AUDIT.subject Subject of the transaction.

AUDIT.trackingId The PingFederate Tracking ID. This element can be used
to help correlate audit information in the PingAccess
audit log with information recorded in the PingFederate
audit log.

The value of this depends on whether the application
type is Web or API.

If the application type is Web, the value is presented
as tid:<Session_Identifier>. The
<Session_Identifier> can be used by the PingFederate

http://documentation.pingidentity.com/pingfederate/pf/?contextId=concept_sessionRevocationApi

 | PingAccess Administrator's Guide | 22

Item Description
Session Revocation API to revoke the session without
disabling the user in the identity store.

If the application type is API, the value is presented as
atid:<Hash>. The <Hash> value is derived from the
OAuth Access token for the session, and only serves as
an identifier; it cannot be used for session revocation.

AUDIT.reqReceivedMillisec Time in milliseconds (since 1970) that a client request
was first received

AUDIT.reqSentMillisec Time in milliseconds (since 1970) that the agent or
engine sent a backchannel or proxy request

AUDIT.respReceivedMillisec Time in milliseconds (since 1970) that the agent or
engine received a response from a backchannel call or
proxy request

AUDIT.respSentMillisec Time in milliseconds (since 1970) that a response was
sent back to the client

AUDIT.roundTripMS The respSentMillisec time minus the
reqReceivedMillisec time. This represents the total
number of milliseconds it took PingAccess to respond to
a client’s request (including the proxyRoundTripMS).

AUDIT.proxyRoundTripMS The respReceivedMillisec time minus the
reqSentMillisec time. This represents the total number of
milliseconds PingAccess was waiting for another entity
to respond to a backchannel call or proxy request.

Logging

PingAccess logging is handled by the Blitz4j asynchronous logging library, configured using the
<PA_HOME>/conf/blitz4j.properties file. Blitz4j is an extension of the Log4j framework, so the
blitz4j.properties file is similar to a log4j.properties file.

Info: Audit logs are also configurable in the blitz4j.properties file. These logs record a selected
subset of transaction log information at runtime plus additional details (see Security Audit Logging).

By default, logging information is output to <PA_HOME>/logs/pingaccess.log, and file logging uses
the rolling file appender. PingAccess keeps a maximum of 10 log files, each with a maximum size of 100
MB. Once 10 files accumulate, PingAccess deletes the oldest. These defaults can be changed by locating and
modifying the following properties in the asynchronous file logging configuration section of
blitz4j.properties:

• log4j.appender.file.File=./logs/pingaccess.log
• log4j.appender.file.MaxFileSize=100MB
• log4j.appender.file.MaxBackupIndex=10

Tip: The default log level is DEBUG. We recommend that once PingAccess is configured and is in use in a
production environment, logging be configured to use the lowest, most appropriate level for your needs.

In addition to the standard Blitz4j items, PingAccess adds the following custom item that can be used in the
blitz4j.properties configuration:

Item Description

exchangeId Identifies the ID for a specific request/response pair.

http://documentation.pingidentity.com/pingfederate/pf/?contextId=concept_sessionRevocationApi

 | PingAccess Administrator's Guide | 23

For example, the following line from blitz4j.properties incorporates the exchangeId in the output:

log4j.appender.file.layout.ConversionPattern=%d{ISO8601} %5p
 [%X{exchangeId}] %c:%L - %m%n

Note: The %X conversion character is required for the exchangeId to be displayed properly.

Configuring Log Levels

Define log levels for specific package or class names in order to get more (or less) logging from a class or group of
classes. If the log level is not specified for a particular package or class, the settings for the root logger are inherited.

1. Locate this line: log4j.rootLogger=DEBUG,file

2. Modify the first value in the comma-separated list to one of the valid log levels: OFF, FATAL,
ERROR, WARN, INFO, DEBUG, TRACE. For example, to apply TRACE level logging, change
log4j.rootLogger=DEBUG,file to log4j.rootLogger=TRACE,file

Configuring a Class or Package Log Level

1. Open the file <PA_HOME>/conf/blitz4j.properties in an editor and locate line containing
log4j.logger.<classname>.

2. Set the first value in the comma-separated list to one of the valid log levels:
OFF, FATAL, ERROR, WARN, INFO, DEBUG, TRACE.
For example, to apply TRACE level logging for the com.pingidentity package, locate the following line:
log4j.logger.com.pingidentity=DEBUG,file and change it to:

log4j.logger.com.pingidentity=TRACE,file

Enabling Cookie Logging

Cookie logging is an optional feature in the TRACE log level.

1. Stop the PingAccess standalone or engine instance
2. Edit <PA_HOME>/conf/blitz4j.properties and uncomment the following lines:

log4j.logger.com.pingidentity.pa.core.interceptor.CookieLoggingInterceptor=TRACE,file
log4j.additivity.com.pingidentity.pa.core.interceptor.CookieLoggingInterceptor=false

3. Restart PingAccess.

Append Log Messages to Syslog and the Console

Additional output destinations (called appenders) are available. Configuration for the console and syslog appenders
is included in the blitz4j.properties file, but not enabled by default. In the file, enable the console or syslog
appenders by uncommenting and modifying the configuration entries for log4j.appender.console and
log4j.appender.syslog respectively.

In addition to defining and configuring the appender using the log4j.appender.AppenderName properties,
you must do the following:

• Enable a new appender
• Add the appender to the root logger to enable logging not specifically controlled by a package/class name logger
• Add the appender to any of the package/class name specific loggers you want appended

Enable a New Appender
1. Add the appender name to the comma delimited list of asynchronous appenders.

For example, to enable the console logger, locate the following line:

log4j.logger.asyncAppenders=DEBUG,file

 | PingAccess Administrator's Guide | 24

and change it to:

log4j.logger.asyncAppenders=DEBUG,file,console

Info: The DEBUG qualifier applied to the asyncAppenders does not apply DEBUG level logging
to the appender. This setting exists for compatibility in configuring Blitz4j on top of Log4j. It is
recommended that you do not remove this value.

Add the Appender to the Root Logger
2. Add the appender name to the rootLogger comma delimited list.

For example, to add the console appender, locate the following line:

log4j.rootLogger=DEBUG,file

and change it to:

log4j.rootLogger=DEBUG,file,console

Add the Appender to a Logger
3. Add the appender name to a package or classname logger.

For example, to add the console appender to the com.pingidentity package-specific logger, locate the
following line:

log4j.logger.com.pingidentity=DEBUG,file

and change it to:

log4j.logger.com.pingidentity=DEBUG,file,console

Writing Logs to Other Formats

PingAccess provides the option of writing the administrative API and engine audit logs to an Oracle database.

Info: To ensure availability of audit log information if database logging fails for any reason, enable both file
and database audit logging. An automated failover from database to file logging is not currently available.

You may also configure PingAccess to write the audit logs to a differently formatted log file that can easily be
digested by Splunk.

• Writing Logs to Databases
• Writing Audit Logs for Splunk

Writing Audit Logs for Splunk

Splunk is enterprise software that allows for monitoring, reporting, and analyzing consolidated log files. Splunk
captures and indexes real-time data into a single searchable repository from which reports, graphs, and other data
visualization can be generated. To configure PingAccess to write audit logs to a format for Splunk:

1. In <PA_HOME>/conf/blitz4j.properties, uncomment one or more of the preset log-appender
configurations identified below:

• API audit logging for Splunk: SplunkApiAudit
• Engine audit logging for Splunk: SplunkEngineAudit

2. Add the appender name to the associated comma-separated list of appenders in the Log Level Configuration
section.

• API audit log for Splunk:

Locate the log4j.logger.apiaudit line and add SplunkApiAudit to the list. For example:

 | PingAccess Administrator's Guide | 25

log4j.logger.apiaudit=INFO,apiaudit,SplunkApiAudit
• Engine audit log for Splunk: Locate the log4j.logger.engineaudit line and add

SplunkEngineAudit to the list. For example:

log4j.logger.engineaudit=INFO,engineaudit,SplunkEngineAudit

3. Save the file, then restart PingAccess.
4. Download and install the Splunk Universal Forwarder on the machine running PingAccess.
5. Configure the Universal Forwarder to monitor <PA_HOME/logs>/pingaccess_api_audit_splunk.log or

<PA_HOME>/logs/pingaccess_engine_audit_splunk.log.

Info: For detailed installation and configuration instructions, consult the Splunk documentation
accompanying the Universal Forwarder.

Writing Logs to Databases

You can enable database logging for the API and engine audit logs in the blitz4j.properties file located in
your PingAccess install. Scripts are provided to create the necessary tables.

Info: To ensure availability of audit log information if database logging fails for any reason, we recommend
enabling both file and database audit logging. An automated failover from database to file logging is not
currently available.

1. Ensure that your database driver JAR file is installed in the <PA_HOME>/lib directory. Restart PingAccess after
installing the driver.

2. In the blitz4j.properties file, located in the /conf directory, uncomment one or more of the preset
appender configurations listed below:

• For Administrative API audit logging: OracleDbApiAudit
• For Engine audit logging: OracleDbEngineAudit

3. Replace the placeholder parameter values for each enabled appender with valid values to provide access to the
database. These placeholder values are defined in the relevant blitz4j.properties section. We recommend
that they be tested and validated prior to production deployment.

Info: You can obfuscate the password used to access the database by running either obfuscate.sh
or obfuscate.bat, located in the <PA_HOME> directory. Use the database password as an argument,
then copy the output into the password configuration property for the appender in <PA_HOME>/conf/
blitz4j.properties.

4. Add the appender name to the associated comma-separated list of appenders in the Log Level Configuration
section.

• Oracle database API audit log:Locate the log4j.logger.apiaudit line and add
OracleDbApiAudit to the list. For example:

log4j.logger.apiaudit=INFO,apiaudit,OracleDbApiAudit
• Oracle database engine audit log:

Locate the log4j.logger.engineaudit line and add OracleDbEngineAudit to the list. For
example:

log4j.logger.engineaudit=INFO,engineaudit,OracleDbEngineAudit

5. Create database tables. Scripts to create database tables are provided.

The scripts are located in the directory:

<PA_HOME>/conf/blitz4j/sql-scripts

Info: The scripts are written to handle the default list of elements for the relevant database log-appender.
Any changes to the list requires corresponding changes to the SQL table-creation script (or to the
table itself if it is already created). For more information on working with this script, see the Oracle
documentation.

 | PingAccess Administrator's Guide | 26

Accessing PingAccess Interfaces

Accessing the PingAccess Administrative Console

1. Open a web browser
2. Go to https://<DNS_NAME>:<PORT>

<DNS_NAME>
The hostname or address of the PingAccess server.

<PORT>
The port where the administrative console listens. The default port is 9000.

For example, https://localhost:9000.

Upon a successful login, PingAccess creates a backup of the current configuration to allow the administrator to revert
any changes made. This backup is stored in <PA_HOME>/data/archive. The number of backup files can be
controlled using the pa.backup.filesToKeep property in run.properties.

Caution: As the backup file contains your complete PingAccess configuration, ensure the file is protected
with appropriate security controls in place.

Administrative Console Elements

The PingAccess Administrative Console is a rich web user interface with many icons and direct actions on objects.
This page describes the techniques and icons used throughout the console.

Online Help

The Administrative Console provides extensive online help. When you hover the mouse over the help icon, a
popup is presented with a brief explanation of the of the page, section, or field containing it. The popup includes a
hyperlink to the relevant page of the Administrator's Manual for more detail.

Icons

• Menu - the menu icon indicates that one or more actions are available on the object. Click on the menu icon to
see the list of actions, then click on the action to perform. Example actions are Edit, Delete and Download.

• Edit - the edit icon is used to modify object properties.
• Delete - the delete icon is used to delete the object.
• Save - the save icon is used to save the object values.
• Remove - the remove icon is used to delete objects.
• Add - the add icon is used to add new objects.
• Download - the download icon is used to download the object using the browser to the local computer.
• Reorder - the reorder icon is used to rearrange object order by dragging the object to the desired location.

Object Layout

Objects such as applications can be laid out in card view or row view by clicking one of the layout icons .

 | PingAccess Administrator's Guide | 27

Object filtering

Many pages have a filter that enables narrowing down the number of available objects. As you type characters into
the filter, only objects that meet the filter criteria are shown. There are also controls to limit the number of items
displayed to 8, 16, or 32. If more items are available than the limit permits, the results will be split across multiple
pages.

Accessing the PingAccess Administrative API

1. Send HTTP request to URL https://<host>:<admin-port>/pa-admin-api/v1/<api-
endpoint>.

2. You must provide appropriate administrator credentials in the request.

For example, the following cURL command will return a list of all defined applications by sending
a Get request to the applications resource:

curl -k -u Administrator:Password1 -H "X-Xsrf-Header:
 PingAccess" https://localhost:9000/pa-admin-api/v1/applications

• The -u Administrator:Password1 parameter sends Basic Authentication header with
the username Administrator and password Password1

• The -k parameter specifies to ignore HTTPS certificate issues
• The -H "X-Xsrf-Header: PingAccess" parameter sends an X-XSRF-Header with

value PingAccess

Accessing the Interactive Administrative API Documentation

1. Start PingAccess.
2. Launch your browser and go to URL https://<host>:<admin-port>/pa-admin-api/v1/api-

docs/. For example, https://localhost:9000/pa-admin-api/v1/api-docs/.
3. The browser may prompt for credentials. Enter the administrator username and password.

For example, to use the interactive Administrative API documentation to see all defined
applications:

1. Click on the /applications endpoint to expand it.
2. Click on the GET method (GET /applications) to expand it.
3. Enter parameters values or leave all blank.
4. Click Try It Out button.
5. The Request URL, Response Body, Response Code, and Response Headers appear.

Performance Tuning

While PingAccess has been engineered as a high performance engine, its default configuration may not match your
deployment goals nor the hardware you have available. Consult the following sections to optimize various aspects of
a PingAccess deployment for maximum performance.

Info: An additional document related to performance, the PingAccess Capacity Planning Guide, is also
available to customers as a performance data reference. This document is available from the Customer Portal
(ping.force.com/Support).

Java Tuning

Tuning the Java Heap

https://ping.force.com/Support

 | PingAccess Administrator's Guide | 28

One of the most important tuning options you can apply to the Java Virtual Machine (JVM) is to configure how
much heap (memory for runtime objects) to use. The JVM grows the heap from a specified minimum to a specified
maximum. If you have sufficient memory, best practice is to “fix” the size of the heap by setting minimum and
maximum to the same value. This allows the JVM to reserve its entire heap at startup, optimizing organization and
eliminating potentially expensive resizing.

By default, PingAccess fixes the Java heap at 512 megabytes (MB). This is a fairly small footprint and not optimal
for supporting higher concurrent user loads over extended periods of activity. If you expect your deployment of
PingAccess to serve more than 50 concurrent users (per PingAccess node if deploying a cluster), we recommend that
you increase the heap size.

Modify the Java Heap Size

To modify heap size for the run.sh or run.bat scripts, do the following:

1. Edit the appropriate PingAccess startup script in <PA_HOME>/bin:

• For Linux: run.sh
• For Windows: run.bat

2. Specify overall heap size by modifying the MINIMUM_HEAP and MAXIMUM_HEAP parameters:

• Modify -Xms512m to change the MINIMUM_HEAP value
• Modify -Xmx512m to change the MAXIMUM_HEAP value

Specify units as m (megabytes) or g (gigabytes).
3. Specify young generation size by modifying the MINIMUM_NEW and MAXIMUM_NEW variables:

• Modify -XX:NewSize=256m to change the MINIMUM_NEW value
• Modify -XX:MaxNewSize=256m to change the MAXIMUM_NEW value

Set values to 50% of MINIMUM_HEAP and MAXIMUM_HEAP.

Info: Not advisable if selecting the G1 collector (see Garbage Collector Configuration for more
information).

Modify the Java Heap Size for Linux Service

Since the Linux Service uses the run.sh file, the service uses the that file's Java settings.

Modify the Java Heap Size for Windows Service

To modify heap size for Windows Service, do the following:

1. Edit the PingAccessService.conf file located in the \sbin\windows directory of the PingAccess
install:

2. Specify overall heap size by modifying the wrapper.java.initmemory and
wrapper.java.maxmemory settings. - Set the values (in megabytes) for initial and maximum heap sizes,
respectively.

3. Specify young generation size by modifying the wrapper.java.additional.11 and
wrapper.java.additional.12 settings. - Set the values (in megabytes) for initial and maximum new
generation sizes, respectively.

4. Restart. The settings in the PingAccessService.conf file are only applied at service startup.

Info: Not advisable if selecting the G1 collector (see Garbage Collector Configuration for more
information).

Garbage Collector Configuration

Selecting the appropriate garbage collector depends on the size of the heap and available CPU resources. The
following is a table of available collectors and some general guidance on when and how to use them.

 | PingAccess Administrator's Guide | 29

Garbage Collector Description Modifications

Parallel • Best used with heaps 4GB or less
• Full stop-the-world copying and

compacting collector
• Uses all available CPUs (by

default) for garbage collection

Default collector for server JVM. No
modification is required to run.sh,
run.bat, or the Windows Service
configuration file.

Concurrent Mark Sweep (CMS) • Best for heaps larger than 4GB
with at least 8 CPU cores

• Mostly a concurrent collector
• Some stop-the-world phases
• Non-Compacting
• Can experience expensive, single

threaded, full collections due to
heap fragmentation

run.sh/run.bat: Set
GARBAGE_COLLECTOR to ‑XX:
+UseConcMarkSweepGC in the
script.

Note: Quote delimiters are
required in run.sh, but not
run.bat.

Windows Service: Set
wrapper.java.additional.10
to ‑XX:+UseConcMarkSweepGC
in PingAccessService.conf.

Garbage First (G1) • Best for heaps larger than 6GB
with at least 8 CPU cores

• Combination concurrent and
parallel collector with small stop-
the-world phases

• Long-term replacement for CMS
collector (does not suffer heap
fragmentation like CMS)

run.sh/run.bat: Set
GARBAGE_COLLECTOR to ‑XX:
+UseG1GC in the run script.

Note: Quote delimiters are
required in run.sh, but not
run.bat.

Also disable MINIMUM_NEW and
MAXIMUM_NEW tuning. Explicit
sizing adversely affects pause time
goal. To disable, comment the lines
out in the script.

Windows Service: Set
wrapper.java.additional.10
to ‑:+UseG1GC in
PingAccessService.conf.
Also disable
wrapper.java.additional.11
and
wrapper.java.additional.12.
Explicit sizing adversely affects
pause time goal. To disable,
comment the lines out using #.

Resource Pools
Acceptor Threads

PingAccess uses a pool of threads to respond to HTTP/S requests made to the TCP port(s) in use. This applies to
both administrative and runtime engine listening ports. Acceptor threads read user requests from the administrative
or runtime port and pass the requests to worker threads for processing. A best practice is to use at least two acceptors
for performance. On larger multiple CPU core machines, more acceptors can be used. We recommend limiting to
between two and 1/4th the number of available CPU cores.

To modify, open the run.properties file located in the conf directory of your PingAccess deployment and
specify the number of acceptors you want to use on the following lines:

 | PingAccess Administrator's Guide | 30

admin.acceptors=N

engine.http.acceptors=N

agent.http.acceptors=N

Where N represents the number of acceptor threads.

Worker Threads

PingAccess uses a pool of worker threads to process user requests and a separate pool to process agent requests.
Worker threads receive user requests from Acceptor threads, process them, respond back to the client and then return
to the pool for reuse. By default, PingAccess starts with a minimum of five worker threads and grows as needed
(unbounded by default). You can define the minimum and maximum number of Worker threads in each pool by
adding and/or modifying properties found in the run.properties file.

To set values, open the run.properties file located in the conf directory of your PingAccess deployment. If the
properties do not exist in the file add them.

engine.httptransport.coreThreadPoolSize=N
engine.httptransport.maxThreadPoolSize=N

and

agent.httptransport.coreThreadPoolSize=N
agent.httptransport.maxThreadPoolSize=N

Where N represents the number of worker threads.

Maintenance of the pool is such that if the number of threads in the pool exceeds the value
of engine.httptransport.coreThreadPoolSize, threads idle for 60 seconds
are terminated and removed from the pool. The idle timeout value is not modifiable.
However, if the values of engine.httptransport.coreThreadPoolSize and
engine.httptransport.maxThreadPoolSize are the same, a fixed sized pool is created and idle
threads are not terminated and removed. Similarly for agent.httptransport.coreThreadPoolSize and
agent.httptransport.maxThreadPoolSize.

Since the pool by default is allowed to grow and shrink based on demand, it is recommended
that you tune the engine.httptransport.coreThreadPoolSize and
agent.httptransport.coreThreadPoolSize (minimum) to satisfy moderate demand on the system. We
recommend a minimum of 10 threads per available CPU core as a good value to support up to twice the number of
concurrent users without error or significant degradation in performance.

Backend Server Connections

PingAccess provides a few options to control and optimize connections to the proxied site.

Max Connections

Connections to PingAccess are not explicitly connections to the proxied site. PingAccess creates a pool of
connections, unlimited in size by default, that are multiplexed to fulfill client requests. Maintenance of the pool
includes creating connections to the site when needed (if none are available) and removing connections when the
Keep Alive Timeout is reached.

In certain situations it can be advantageous to limit the number of connections in the pool for a given Web site. If,
for example, the Web site is limited to the number of concurrent connections it can handle or has specific HTTP
Keep Alive settings, limiting the number of connections from PingAccess can improve overall performance by not
overloading the backend server. In the event that all connections in the pool are in use, a requesting thread waits

 | PingAccess Administrator's Guide | 31

for one to become available. Assuming that response time from the backend site is sufficiently fast, the time spent
waiting for a connection is likely to be less than if the system becomes overloaded.

Info: We strongly recommended that you understand the limits and tuning of the server application being
proxied. Setting the Max Connections value too low may create a bottleneck to the proxied site, setting the
value too high (or unlimited) may cause PingAccess to overload the server.

See Sites for information on setting Max Connections.

Keep Alive Timeout

As mentioned in the previous section, the Keep Alive Timeout value controls how long a connection created to the
proxied Site is kept in the pool for use. This value should be set lower than the HTTP Keep Alive timeout of the Site
being proxied.

Configuring PingAccess to timeout the connections before the proxied server ensures that use of “stale” connections
to the Site is not attempted, causing failure and retry overhead. To improve efficiency, keep the timeout value of
PingAccess connections as close as possible to the timeout value of the proxied server without matching or going
over that value. This depends on the time granularity afforded by the proxied HTTP server's configuration (time set in
minutes, seconds, milliseconds, etc.) and may take some testing to fully optimize. As a starting point, we suggest 500
milliseconds (half a second) to one second as PingAccess transactions typically complete in less than a half a second
on a properly-sized deployment. See Sites for information on setting Keep Alive Timeout.

Logging and Auditing

PingAccess uses a high performance, asynchronous logging framework to provide logging and auditing services with
as low impact to overall application performance as possible.

Logging

Although logging is handled by a high performance, asynchronous logging framework, it is more efficient to the
system overall to log the minimum amount of information required. We highly recommend that you review the
section of the documentation for logging and adjust the level to the lowest, most appropriate level to suit your needs
(see Manage Log Files).

Auditing

As with logging, auditing is provided by the same high performance, asynchronous logging framework. Furthermore,
auditing messages can be written to a database instead of flat files, decreasing file I/O. If you do not require auditing
for interactions with a Resource or between PingAccess and PingFederate, it is more efficient to disable audit
logging. However, if you do require auditing services and have access to a Relational Database Management System
(RDBMS), we recommend auditing to a database. You will see a decrease in disk I/O, which may result in increased
performance depending on database resources.

Agent Tuning

Several properties in the agent.properties file can be configured for increased performance. See the agent
documentation for Apache or IIS for more information on agent configuration and setting properties.

Max Connections

Connections from the agent to PingAccess are limited by
agent.engine.configuration.maxConnections. The default is set to 10. In certain situations it can
be advantageous to increase the number of connections. In the event that all connections in the pool are in use, a
requesting thread waits for one to become available. Assuming that response time to PingAccess is sufficiently fast,
the time spent waiting for a connection is likely to be less than if the system becomes overloaded. Note that this is
the maximum number of connections per worker process, and not simply the total number of workers the agent has
access to. Setting agent.engine.configuration.maxConnections value too low may create a bottleneck
to PingAccess, and setting the value too high may cause PingAccess to become overloaded.

https://documentation.pingidentity.com/pingaccess/paaa11/#Configuration.html
https://documentation.pingidentity.com/pingaccess/paai11/#Configuration.html

 | PingAccess Administrator's Guide | 32

Max Tokens

By default, the maximum number of cached tokens in an agent is unlimited. In certain situations it can be
advantageous to limit the size of the cache for the agent, as a smaller cache has a smaller memory footprint, freeing
up memory available to the application for servicing requests. However, when the token cache limit is reached, the
least recently used token-policy mapping will be removed from the cache. If that token-policy mapping happens to
be needed again, the agent will have a cache miss, resulting in the need to obtain a new token-policy mapping from
PingAccess.

Upgrading PingAccess

Upgrading from PingAccess 2.1 and Later

To run the upgrade utility, you will need the following:

• The PingAccess Upgrade Utility archive
• The PingAccess 3.2 zip file
• Your PingAccess 3 license file
• Login access to the PingAccess host, as the utility is run on the host
• Basic Authentication needs to be configured and enabled for the running PingAccess instance. Administrator

Single Sign-On must be disabled for the upgrade.
• The version of PingAccess you are upgrading from must be running
• Administrator credentials for the running PingAccess instance

Copy these files to the system being upgraded, and unpack the PingAccess Upgrade Utility archive.

The upgrade utility starts an instance of PingAccess 3.2 with an administrative listener on port 9001. This port
number can be changed using the run.bat/run.sh -p parameter. This port configuration is only used for the
upgrade - the default port is used by the upgraded server when the upgrade is complete.

Any warnings or errors encountered are recorded in log/upgrade.log, as well as on the screen while the utility is
being run.

Info: During the upgrade, it is important to not make any changes to the running PingAccess environment.

Use the PingAccess Upgrade Utility to upgrade from PingAccess 2.1 or later to version 3.2.

1. Unpack the upgrade utility zip file.
2. Change to the upgrade utility's bin directory.
3. Run the PingAccess Upgrade Utility:

• On Windows: run.bat [-p <admin_port>] <sourcePingAccessRootDir> <outputDir>
<pingaccessZip> <newPingAccessLicense>

• On Linux: ./run.sh [-p <admin_port>] <sourcePingAccessRootDir> <outputDir>
<pingaccessZip> <newPingAccessLicense>

./run.sh -p 9002 pingaccess-3.1.0 pingaccess-3.2.0 pingaccess-3.2.0.zip
pa32.lic

Parameter Definitions

The command-line parameters are the same regardless of the platform, and are defined as follows:

Parameter Value Description

<admin_port> Optional port to be used by the temporary PingAccess
instance run during the upgrade. The default is 9001.

<sourcePingAccessRootDir> The PA_HOME for the source PingAccess version

<outputDir> The target directory which will contain the unpacked
PingAccess distribution

 | PingAccess Administrator's Guide | 33

Parameter Value Description

<pingaccessZip> The PingAccess distribution for the target version

<newPingAccessLicense> The path to the PingAccess license file to use for the
target version

Note: In the context of an upgrade, "source" refers to the old version of PingAccess, and "target" refers to
the new version.

Upgrading a PingAccess Cluster

Info: It is important for any backout plan that all nodes in a clustered PingAccess be running the same
software release.

To upgrade a cluster, perform the following steps:

1. Run the upgrade utility on the administrative console
2. Change the upgraded administrative console's admin.port value to a temporary value.
3. Start the upgraded administrative console
4. Perform any manual post-upgrade tasks recorded in the upgrade log
5. Shut down the upgraded administrative console
6. Change the upgraded administrative console's admin.port value back to the original value.
7. Run the upgrade utility on each engine node
8. Shut down the entire cluster
9. Start the upgraded administrative node
10. Start each upgraded engine node

Completing the Upgrade

At the end of a successful upgrade, the PingAccess Upgrade Utility will record any manual steps that require user
intervention both on-screen and in log/upgrade.log. When the upgrade is complete, the source PingAccess
installation is left running. Collect any information needed to complete these manual steps from the running instance,
then shut down the source PingAccess server and start new PingAccess 3.1.1 server to complete the manual portion of
the upgrade.

If you want to see details about the migrated configuration data, examine log/audit.log. For more information
about these tasks, see Post-Upgrade Tasks.

Performing Post-Upgrade Tasks

After the upgrade has completed, we recommend the following additional steps be performed:

1. Review any warnings returned by the upgrade utility and take the actions indicated in the table below.
2. Generate new obfuscated passwords for the pa.jdbc.password, pa.jdbc.filepassword, and

pa.keystore.pw parameters in conf/run.properties:

a. Conditional: If you are on a Linux host, run obfuscate.sh password .
b. Conditional: If you are on a Windows host, run obfuscate.bat password .
c. Copy the obfuscated password and paste it into the parameter in run.properties that corresponds to the

password being re-obfuscated.
3. Review the HTTP Requests on page 69 configuration to ensure the use of the IP Source settings is appropriate

for the environment. During the upgrade process, the List Value Location setting is changed from the default of
Last to First to match the behavior from earlier releases.

Warning Text Steps to Take

Resource 'ResourceName' contains an
invalid path prefix and cannot be

This occurs when the 2.1 path prefix contains
functionality supported via a Java regex, but not by

 | PingAccess Administrator's Guide | 34

Warning Text Steps to Take
migrated to the target version. Manual
intervention is required.

the wild card support in 3.1. The user must manually
migrate the regex to 1 or more path prefixes in 3.1. For
example, consider the 2.1 prefix, /(app1|app2). This
can be translated to a single resource in 3.1.1 with path
prefixes of /app1 and /app2.

Resource 'ResourceName' requires a
case-sensitive path. This conflicts
with its containing Application, which
requires a case-insensitive path.
Manual intervention may be required.

The upgrade utility identifies path prefixes in 2.1 that
start with /(?i) as path prefixes that are case-insensitive,
and sets the case-sensitivity flag on the Application
appropriately. However, if multiple resources in a new
application use inconsistent case-sensitivity settings, the
utility cannot determine what the case-sensitivity should
be. 2.1 resources are case-sensitive by default.

Resource 'ResourceName' requires a
case-insensitive path. This conflicts
with its containing Application, which
requires a case-sensitive path. Manual
intervention may be required.

This is the same as the previous setting, but with the
requirement being for a case-insensitive path rather than
a case-sensitive one.

Resource 'ResourceName' is disabled
in the source version. Resources can
no longer be individually disabled.
Application 'ApplicationName' has been
disabled due to this constraint.

In 2.1, individual resources can be disabled. In 3.1,
only applications can be enabled/disabled. The upgrade
utility takes the approach of disabling the application
if any related resources are disabled. Check the final
configuration and make sure this is the desired outcome.
 If it is not, the disabled resources need to be deleted, and
the application needs to be enabled.

Path prefix for Resource
'ResourceName' contains a '.'
character. This will be treated as a
literal '.' in the target version.

In a 2.1 setup, it is likely that there will be resource
names that accidentally contain a '.', assuming it is a
literal '.' rather than part of a regex. For example, any file
extension type resources will probably not be escaping
the '.'. This message is intended to bring this change in
semantics to the user's attention. This action item will not
show up if the user has correctly escaped the '.' character
with the '\.' sequence.

Resource 'ResourceName' could not be
migrated to the target version due to
Application context root conflicts.
Manual intervention is required.

This message indicates that multiple resources that use
the same virtual host, but a different Web Session or Site
must be mapped under the same context root in the same
application to preserve semantics. For example, consider
the following configuration:

• Resource A:

• Path Prefix: /hr
• Virtual Host: internal.example.com
• Web Session: W
• Site: Z

• Resource B:

• Path Prefix: /sales
• Virtual host: internal.example.com
• Web Session: W
• Site: Z

• Resource C:

• Path Prefix: /payroll

 | PingAccess Administrator's Guide | 35

Warning Text Steps to Take
• Virtual Host: internal.example.com
• Web Session: V
• Site: Z

This configuration triggers this action item because these
resources cannot be grouped in the same application, but
they would need to be in order to preserve the semantics
in the internal.example.com address space. This issue
could be fixed by using rewrite rules to place Resource C
or Resources A and B under a different namespace. For
example, use /intranet/sales and /intranet/hr on the front-
end and rewrite out the /intranet on the backend.

Application 'ApplicationName' contains
OAuth rules, but authenticates users
with a web session. Unexpected results
may occur.

2.1 allows OAuth rules to be attached Resources that
use a Web Session. While this configuration is likely
invalid in the first place, it would be possible to include
both a PA cookie and OAuth token in requests and PA
would apply policy to the requests as configured. In 3.1,
however, an API application and web application are
mutually exclusive so the semantics of this particular
configuration cannot be preserved.

The resource order for Virtual Host
'VirtualHostName' has changed in the
target version.

The upgrade utility checks that the resource order is
consistent before and after the upgrade. This message
indicates that the resource order from 2.1 does not
match 3.1. This is likely due to how context roots in
applications are ordered in 3.1. For 3.1, applications are
ordered based on their context root, where the longest
context root is checked first during resource matching.

One way to address this is to review and potentially
change the Application context root values associated
with the Virtual Host to avoid URL overlaps between
applications.

Application 'ApplicationName'
is no longer associated with an
Identity Mapping. A Web Session or an
Authorization Server is required to
use Identity Mappings.

Indicates a misconfiguration in the source version. Check
whether you intended to use an Identity Mapping for the
Application and associate an appropriate Web Session or
Authorization Server if necessary.

OAuth Rule with id 'RuleId' is no
longer associated with Application
'ApplicationName' because Application
'ApplicationName' is not an OAuth
Application. Manual intervention may
be required.

Indicates a misconfiguration in the source version. Check
whether the OAuth Rule is necessary to implement the
desired Access Control policy.

OAuth RuleSet with id 'RuleSetId' is
no longer associated with Application
'ApplicationName' because Application
'ApplicationName' is not an OAuth
Application. Manual intervention may
be required.

Indicates a misconfiguration in the source version. Check
whether the OAuth RuleSet is necessary to implement
the desired Access Control policy.

Resource 'ResourceName' from
Application with id 'ApplicationId'

Indicates a Resource associated with the Application
is associated with OAuth Rules. This is likely a

 | PingAccess Administrator's Guide | 36

Warning Text Steps to Take
was not migrated because the
Application is a Web Application while
the Resource has OAuth Rules. Manual
intervention may be required.

misconfiguration, and it is necessary to evaluate whether
this was intended or not.

Upgrade created 'Availability
Profile for Site 'SiteName''. A more
descriptive name may be required.

Indicates that an Availability Profile was created for
the Site during the upgrade. You may want to give the
Availability Profile a more descriptive name.

Application 'ApplicationName'
and associated Resources were not
migrated. The context root of /pa is
reserved. Manual intervention may be
required.

The /pa context root was allowed as a valid context root
in PingAccess 3.0 and is no longer allowed.

Resource 'ResourceName' from
Application with id 'ApplicationId'
was not migrated because the /
pa prefix is reserved when the
Application context root is /. Manual
intervention may be required.

The /pa path prefix was allowed as a valid path prefix
in PingAccess 3.0 and is no longer allowed.

The OAuth Groovy Script Rule no
longer controls the realm in the
response sent for an unauthorized
OAuth request.

With PingAccess 3.2, Realms have been moved to
the Application. The Realm can still be set using the
PingAccess Admin API interface. With the change in
context for how realms are applied, it is necessary to
check existing OAuth Groovy Rules to ensure that they
behave as expected. This message is shown if any OAuth
Groovy Rules exist in the migrated configuration.

The property 'PropertyName' was
set to a blank value to maintain
compatibility. However, it is
recommended that this be set to
'PropertyName=PropertyValue

New Security Headers Properties on page 133 values
are not set during an upgrade in order to preserve the
behavior from the source release in the upgrade. If
there is no reason not to in your environment, update
run.properties with the recommended setting.

As a security enhancement, the
default value of 'CipherList'
has changed with this version of
PingAccess. Your existing ciphers
remain unchanged. However, it is
recommended to use the default value:
'PropertyName=CipherList'.

This message applies to the admin.ssl.ciphers,
engine.ssl.ciphers, and
agent.ssl.ciphers lists. This message is displayed
if the upgrade source version cipher lists are changed
from the defaults. We recommend updating the
configuration with the new default value if possible.

The property 'PropertyName' was
set to a blank value to maintain
compatibility. However, it is
recommended that this be set to
'PropertyName=CipherList

This message applies to the site.ssl.protocols,
site.ssl.ciphers, pf.ssl.protocols,
and pf.ssl.ciphers settings. The upgrade utility
sets these values as empty values in order to maintain
backwards compatibility, but the recommended value
should be used if possible.

The host for VirtualHost
VirtualHost:Port already has a KeyPair
associated with it. The KeyPair
previously associated with this
VirtualHost was removed. Only one
KeyPair can be associated with a given
host.

If a Virtual Host has more than one key pair associated
with it, only one key pair will be associated with it after
the upgrade completes. This message is displayed to
indicate which key pair was used.

 | PingAccess Administrator's Guide | 37

Warning Text Steps to Take

Application with name
'ApplicationName' not migrated as the
context root 'Path' was a reserved
path.

If an Application's context root is a reserved PingAccess
path, the application will not be migrated. The indicated
application will need to be created with a context root
that does not conflict with the reserved path.

Resource with name 'ResourceName' not
migrated as the path 'Path' was a
reserved path.

If an Resource path is a reserved PingAccess path,
the application will not be migrated. The indicated
application will need to be created with a context root
that does not conflict with the reserved path.

The CIDR Rule with name 'RuleName' is
associated with an Agent Application
named 'ApplicationName' and overrides
the IP source configuration. A new
Agent rule should be created that does
not override the IP source.

With changes in IP Source header handling, additional
options are available to override the headers used to
identify the source address. When an Agent is involved,
the changes in IP source handling may cause the
specified rule to not behave as expected.

Require HTTPS option on Application
'ApplicationName' was set to Setting
as Virtual Host had port Port. Please
verify this setting is correct.

The upgrade utility attempts to set the Require HTTPS
option based on the virtual host associated with an
application during an upgrade. This message is an
advisory to just verify that the setting was properly
detected.

VirtualHost 'VirtualHost' was not
migrated. An existing VirtualHost
existed with the same logical name
'VirtualHost'.

Virtual Host names are now case-insensitive. During
the upgrade, after making the names case-insensitive, a
duplicate Virtual Host was identified. It will be necessary
to either recreate the virtual host with a new name, or to
modify the configuration so the proper Virtual Host is
migrated to the upgraded system.

Renamed Virtual Host's Hostname from
'VirtualHost' to 'NewVirtualHost' due
to virtual host spec compliance issue

If a Virtual Host name contains an underscore (_)
character, that does not conform to host naming
requirements. In this instance, the underscore will be
renamed to the string a-z. For example, if a Virtual
Host named my_virtual_host is migrated, the new
name will be mya-zvirtuala-zhost.

Removed Http Request Rule with
name 'RuleName', this Rule must be
converted to a groovy script rule.
Manual intervention may be required.

When an HTTP Request Rule is migrated from an earlier
release of PingAccess, rules that specify a source of
Body are not migrated. A Groovy script rule can be
used to perform a similar match, but the details of such a
Groovy script require administrator intervention.

A simple Groovy script rule that would perform a similar
function might be:

requestBodyContains('value')

We advise, however, that a script be constructed that
performs additional validation in order to ensure the rule
passes only when desired; a generic match like this could
lead to unexpected results depending on what content
might be in the request body.

 | PingAccess Administrator's Guide | 38

Restore a PingAccess Configuration Backup

PingAccess automatically creates a backup zip file each time an Administrative user authenticates to the
administrative console. These backups are stored in <PA_HOME>/data/archive, with a maximum number of
backups configurable using the pa.backup.filesToKeep configuration parameter in run.properties.

Caution: This operation will replace your current configuration settings.

To Restore a PingAccess Configuration Backup:

1. Stop PingAccess
2. Unzip the backup file <PA_HOME>
3. Restart PingAccess.

Your PingAccess configuration will now be reverted to the state in the backup archive that was restored.

Applications

Applications represent the protected web applications and APIs to which client requests are sent. Applications
are composed of one or more resources and have a common Virtual Host and Context Root and correspond to a
single target site. Applications also use a common Web Session and Identity Mapping. Access control and request
processing rules can be applied to applications and their resources on the Policy Manager page to protect them.
Applications can be protected by PingAccess Gateway or PingAccess Agent. In a gateway deployment, the target
application is specified as a Site. In an agent deployment, the application destination is an Agent.

Use this page to define the applications which PingAccess protects and to which client requests are ultimately
forwarded. You can use resources to partition the application into areas requiring distinct access control. Each
Application contains at least a Root Resource. The combination of Virtual Server and Context Root must be unique
for each Application.

Configure an Application

1. Provide a unique Name.
2. Enter the Application Context Root.

This value must meet the following criteria:

• It must start with /.
• It can contain additional / path separators.
• It must not end with /.
• It must not contain wildcards or regular expression strings.
• The combination of the Virtual Host and Context Root must be unique. The following is allowed and

incoming requests will match the most specific path first:

• vhost1:443/App
• vhost1:443/App/Subpath

• /pa is reserved for PingAccess and is not allowed as a Context Root
3. Select Case Sensitive Path to make request URL path matching case sensitive.
4. Select the Virtual Host for the Application from the list.
5. Select the Application Type. This value can be either Web or API.
6. Conditional: If the Application Type is Web, select the Web Session for the application from the list of defined

web sessions. This option is only enabled if the Application Type is Web.
7. Conditional: If the Application Type is API, select the Authorization Server used to validate OAuth access

tokens. This option is only enabled if the Application Type is API.

 | PingAccess Administrator's Guide | 39

Note: The PingFederate Authorization Server must be defined in Settings > PingFederate.

8. Select the application Destination type. This value can be either Site or Agent
9. Conditional: If the destination is a Site, select the Site requests are sent to when access is granted. This option

is only enabled when the Destination is a Site.
10. Conditional: If HTTPS is required to access this application, select the Require HTTPS option. This option is

only enabled when the destination is a Site, and if at least one non-secure HTTP listening port is defined.
11. Conditional: If the destination is an Agent, select the agent which intercepts and validates access requests for

the Application. This option is only enabled when the Destination is an Agent.
12. Conditional: If needed, select the Identity Mapping the application will use.
13. Select Enabled to allow the application to process requests.
14. Click either SAVE or /* (Save and go to Resources) when finished. The latter option allows you to configure

additional application resources.

Note: When you save the application, PingAccess verifies the Redirect URI for the Application's virtual
host is configured in PingFederate. If PingAccess determines that the Redirect URI is not defined, you will
receive the following warning:

Save succeeded. Unable to find a matching Redirect URI in the
 PingFederate OAuth Client configuration for [<VHost>/pa/oidc/cb]

If you see this warning, ensure that there is a Redirect URI that matches configured. If you have a
wildcard in your Virtual Host configuration, ensure the Redirect URI list includes the same wildcard host
definition, otherwise you may have a configuration that is only valid in some circumstances.

This validation is performed only if the Application Type is Web, a Web Session is selected, and the
PingFederate Administration connection is configured.

Configure a Resource

Resources represent part of Web applications or APIs which have distinct security requirements. Resources specify
what path prefixes and HTTP methods they apply to. Each application has at least the Root Resource which covers
any requests not covered by other defined resources, and can have any number of additional resources. The first
resource to match a request is used and no further resources are examined. Resources may specify particular
authentication requirements, including no authentication if the Anonymous checkbox is selected. Use this page to
view and edit existing application resources and to define new resources.

Resources are evaluated from most-specific to least-specific, based on the number of path elements and their lengths.
For example, given the following list of resources:

• /* (The default root resource)
• /MyApp/*
• /MyApp/Edit/*
• /MyApp/Admin/*
• /MyApp/Admin/ListUsers*

The processing order would be:

• /MyApp/Admin/ListUsers*
• /MyApp/Admin/*
• /MyApp/Edit/*
• /MyApp/*
• /* (The default root resource)

In addition, when protecting an API, the HTTP method also is considered when identifying the order.

 | PingAccess Administrator's Guide | 40

Configure a Resource

Info: The resource can be disabled by unchecking the Enabled control after the resource has been saved, or
by sliding the slider associated with the resource in the resource card or list view.

1. Enter a unique Name. Up to 64 characters, including special characters and spaces, are allowed.
2. Enter a list of URL path prefixes (within the Context Root) that identify this resource. Prefixes must start with

a slash (/) and may contain one or more wildcard characters (*). No use of wildcards is assumed, so there is a
difference between /app/ and /app/*.

Info: The path prefix starts after the application context root and extends to the end of the URL. It must
begin with a forward slash. Note that /pa and /pa* are reserved prefixes and cannot be used as a path
prefix when the context root is /.

3. If the resource does not require authentication for access, enable the Anonymous option.
4. Select an Authentication Requirements list to define how a user authenticates to the target site. This option only

applies when you specify a Web Session for the application. See Authentication Requirements.
5. Enter the Methods supported by the Resource. Leave the asterisk default if the Resource supports all HTTP

methods, including custom methods. Defining Methods for a Resource allows more fine-grained access control
policies on API Resources. For example, if you have a server optimized for writing data (POST, PUT) and
a server optimized for reading data (GET), you may want to segment traffic based on the operation being
performed.

Info: Method selection only applies to applications of type API.

6. Select the Audit checkbox to log information about the transaction to the audit store.
7. Click SAVE when you finish.

Sites & Agents

Sites & Agents is where you define application destinations - target sites or agents. Sites are the target applications or
APIs which PingAccess Gateway is protecting and to which authorized client requests are ultimately forwarded to.
Site Authenticators define the authentication mechanism that target sites require to control access.

Agents are instances of PingAccess agents with which Policy Server is expecting to receive agent requests from for
target applications or APIs.

Sites

Sites are the locations of applications, endpoints, or APIs in your environment that you want to protect with
PingAccess Gateway.

Screen Navigation Tips

• Use the Filter box on the right to search-as-you-type for sites by name.
• Click on the right to toggle the page view between Card and Table view.

Create a Site

1. Click Sites.
2. Click NEW SITE.
3. Enter a unique Site Name.

The Name can be up to 64 characters, including special characters and spaces.

 | PingAccess Administrator's Guide | 41

4. Specify one or more Targets in the list of targets. The format for this is hostname:port.
For example, you might enter www.example.com:80.

5. Select Secure if the Site is expecting HTTPS connections.
6. Conditional: If the site is configured for secure connections, select a Trusted Certificate Group from the list, or

select Trust Any to trust any certificate presented by the listed targets.
7. To override standard HTTPS certificate hostname validation with a named hostname, enter the hostname in the

Expected Certificate Hostname field. This field is unavailable if Skip Hostname Verification is selected.
8. Conditional: If the Site requires authentication, click the Site Authenticators field, then select one or more

authenticators from the list. Click x to remove a Site Authenticator.

A combination of Site Authenticators is useful when the back-end Site requires a form of service-level
authentication, but the application itself expects end-user related identity information.

Info: You must first configure Site Authenticators in order to populate this list (see Configure Site
Authenticators).

9. Leave the Use Target Host Header check box selected to have PingAccess modify the Host header for the Site's
Target Host and Target Port rather than the Virtual Host configured in the application. Clear this checkbox to
make no changes to the Host header. (See Using Virtual Hosts for more information.)
This is often required by target web servers to ensure they service the HTTP request with the correct internal
virtual server definition.

Note: The options in steps 10-15 are available only when the Advanced section of the page is expanded.

10. Select an Availability Profile.
11. Optional: Select a Load Balancing Strategy, if the site contains more than one target.
12. In the Keep Alive Timeout (ms) box, enter the time (in milliseconds) an HTTP persistent connection to the Site

can be idle before PingAccess closes the connection. The default is 30000 milliseconds.
13. In the Max Connections box, enter the maximum number of HTTP persistent connections you want PingAccess

to have open and maintain for the Site. A value of -1 indicates unlimited connections.
14. Leave the Send Token check box selected to include the PA Token in the request to the back-end Site. Clear the

check box to remove the PA Token from the request.
15. Click SAVE.

Note: If the target site cannot be contacted, the site is saved and a warning is displayed indicating the
reason the site was not reachable.

Edit a Site

1. Enter a unique Site Name.

The Name can be up to 64 characters, including special characters and spaces.
2. Specify one or more Targets in the list of targets. The format for this is hostname:port.

For example, you might enter www.example.com:80.
3. Select Secure if the Site is expecting HTTPS connections.
4. Conditional: If the site is configured for secure connections, select a Trusted Certificate Group from the list, or

select Trust Any to trust any certificate presented by the listed targets.
5. To override standard HTTPS certificate hostname validation with a named hostname, enter the hostname in the

Expected Certificate Hostname field. This field is unavailable if Skip Hostname Verification is selected.
6. Conditional: If the Site requires authentication, click the Site Authenticators field, then select one or more

authenticators from the list. Click x to remove a Site Authenticator.

A combination of Site Authenticators is useful when the back-end Site requires a form of service-level
authentication, but the application itself expects end-user related identity information.

Info: You must first configure Site Authenticators in order to populate this list (see Configure Site
Authenticators).

 | PingAccess Administrator's Guide | 42

7. Leave the Use Target Host Header check box selected to have PingAccess modify the Host header for the Site's
Target Host and Target Port rather than the Virtual Host configured in the application. Clear this checkbox to
make no changes to the Host header. (See Using Virtual Hosts for more information.)
This is often required by target web servers to ensure they service the HTTP request with the correct internal
virtual server definition.

Note: The options in steps 8-12 are available only when the Advanced section of the page is expanded.

8. Select an Availability Profile.
9. Optional: Select a Load Balancing Strategy, if the site contains more than one target.
10. In the Keep Alive Timeout (ms) box, enter the time (in milliseconds) an HTTP persistent connection to the Site

can be idle before PingAccess closes the connection. The default is 30000 milliseconds.
11. In the Max Connections box, enter the maximum number of HTTP persistent connections you want PingAccess

to have open and maintain for the Site. A value of -1 indicates unlimited connections.
12. Leave the Send Token check box selected to include the PA Token in the request to the back-end Site. Clear the

check box to remove the PA Token from the request.
13. Click SAVE.

Note: If the target site cannot be contacted, the site is saved and a warning is displayed indicating the
reason the site was not reachable.

Delete a Site

1. Click the Sites tab.
2. Click the menu button (), then click Delete.

Info: If a Site is associated with an application, you cannot delete it.

Site Authenticators

When a client attempts to access a target Web Site, that Site may limit access to only authenticated clients.
PingAccess integrates with those security models using Site Authenticators. PingAccess supports a variety of Site
Authenticators that range from basic username/password authentication to certificate and token-based authentication.
Create a Site Authenticator for the type of authentication the Site requires.

Tip: For agent deployments, use Identity Mappings to expose user attributes in HTTP request headers
to satisfy application security requirements. Identity Mappings are available for both agent and gateway
deployments.

Screen Navigation Tips

• Click NEW SITE AUTHENTICATOR on the right to configure a new Site Authenticator.

Info: Site Authenticators cannot be used with Agents.
• Use the Filter box on the right to search-as-you-type for Site Authenticators by entering the name or the

authentication type.
• Click to access the edit and delete tasks for a Site Authenticator.

Info: If a Site Authenticator is associated with a Site, you cannot delete it.

Configure Site Authenticators

 | PingAccess Administrator's Guide | 43

When a client attempts to access a target Web Site, that Site may limit access to only authenticated clients.
PingAccess integrates with those security models using Site Authenticators. PingAccess supports a variety of Site
Authenticators that range from basic username/password authentication to certificate and token-based authentication.
Create a Site Authenticator for the type of authentication the Site requires. To create a Site Authenticator:

1. Enter a unique Name. Special characters and spaces are allowed. This name appears in the Site Authenticator list
on the New Site page.

2. Select the type of authentication from the drop-down list.

• Basic Authentication Site Authenticator
• Mutual TLS Site Authenticator
• Token Mediator Site Authenticator

3. Click SAVE.

Basic Authentication Site Authenticator

This Site Authenticator uses HTTP Basic authentication (username:password) to authenticate a client requesting
access to a Site requiring Basic authentication.

Info: Obtain the username and password from your target Site provider.

Field Description

Username Defines the username required for access to the protected
Site.

Password Defines the password required for access to the protected
Site.

Mutual TLS Site Authenticator

This Site Authenticator uses Key Pairs to authenticate PingAccess to a target Site. When initiating communication,
PingAccess presents the client certificate from a Key Pair to the Site during the mutual TLS transaction. The Site
must be able to trust this certificate in order for authentication to succeed.

Tip: Several setup steps are required for PingAccess certificate management before configuring the Mutual
TLS Site Authenticator (see Key Pairs, and Certificates).

Field Description

Key Pair The imported/generated key pair for client
authentication. Select the Key Pair you want to use
to authenticate PingAccess to the target Site (see Key
Pairs).

Token Mediator Site Authenticator

This Site Authenticator uses the PingFederate STS to exchange a PA Token for a security token, such as a WAM
Token or OpenToken, that is valid at the target Site.

Field Description

Token Generator ID Defines the Instance Name of the Token Generator that
you want to use. The Token Generator is configured in

 | PingAccess Administrator's Guide | 44

Field Description
PingFederate (see Configuring Token Generators in the
PingFederate documentation).

Logged In Cookie Name Defines the cookie name containing the token that the
target Site is expecting.

Logged Off Cookie Name Defines the cookie name that the target Site responds
with in the event of an invalid or expired token. If the
PA Token is still valid, PingAccess re-obtains a valid
WAM Token and makes the request to the Site again. If
the Site responds with the cookie set as logged off again,
PingAccess responds to the client with an access denied
page.

Logged Off Cookie Value Defines the value placed in the Logged Off Cookie to
detect an invalid/expired WAM Token event.

Source Token Defines the token type exchanged for a security token
during identity mediation. Leave PA Cookie for Web
access or select OAuth Bearer Token for API identity
mediation.

Send Cookies to Browser Allows the Token Mediator to send the backend
cookie defined in the Logged In Cookie Name field
back to the browser if the protected application has
updated it. This could be used to enable a seamless
SSO experience for users navigating from PingAccess
protected applications to those protected by a 3rd party
Web Access Management system.

Token Processor ID Defines the Instance Name of a Token Processor that
you want to use. The Token Processor is configured in
PingFederate (see Configuring Token Processors in the
PingFederate documentation). Specify this value if more
than one instance of either the JWT Token Processor or
the OAuth Bearer Access Token Processor is defined in
PingFederate.

Agents

Agents are web server plugins that are installed on the web server hosting the target application. Agents intercept
client requests to protected applications and allow or deny the request to proceed by consulting the Policy Manager
or using cached information. Agents communicate with the PingAccess Policy Server via the PingAccess Agent
Protocol (PAAP) which defines in detail the possible interactions between agents and Policy Server. Agents have
a name to identify them and a shared secret to authenticate with to Policy Server. Agents do not need to be unique.
There can be any number of agents using the same name and secret and they are all treated equally by Policy Server.
This is useful in complex deployments where unique agents would be difficult to manage. Agents can be assigned as
the destination for one or more applications by name.

Prior to defining an agent, import or create an Agent listener key pair and assign it to the AGENT HTTPS Listener by
performing the following steps:

1. Perform the steps in the Key Pairs to Import or Generate a Key Pair. The key pair's subject or subject
alternative names list need to include the host or hosts the agent will use to contact the PingAccess Policy Server.

2. Go to the Listeners configuration, and click the menu icon next to the AGENT listener, then click Edit.
3. Select the key pair created in step 1, then click Save.

http://documentation.pingidentity.com/pingfederate/pf/?contextId=help_TokenGeneratorTasklet_TokenPluginMgmtState
http://documentation.pingidentity.com/pingfederate/pf/?contextId=help_TokenProcessorTasklet_TokenPluginMgmtState

 | PingAccess Administrator's Guide | 45

4. Restart PingAccess.

Info: If the environment is clustered, check the pingaccess.log file on each engine to ensure replication
completed before restarting each engine.

The Policy Server needs to know each agent name and it's secret. The Agents page lists defined agents and allows the
user to create, delete, and edit agents.

The Edit Agent page is used to change agent fields:

Field Description

Name A unique name for the agent. Can be up to 64 characters
and must be alphanumeric. It may not include spaces or
special characters.

Description Description of the agent and it's purpose.

PingAccess Host The host that the agent should send PAAP agent requests
to.

PingAccess Port The port that the agent should send PAAP agent requests
to. This port is defined by the agent.http.port parameter
in the PingAccess run.properties file. The default value is
3030.

Shared Secrets The generated shared secrets used to authenticate
the agents. This field has buttons to remove
the existing secret and download the agent
bootstrap.properties file for a specified shared
secret.

Override Request IP Source Configuration When selected, this option enables additional controls
that configure the agent to use different IP Source
information than is defined in HTTP Requests on page
69.

Header Names Contains an ordered list of header names that may
contain one or more source IP address values.

List Value Location When more than one value is included in a header
identified in the Header Names field, this parameter
determines whether the first value or the last value in the
list is used as the source address. The default value is
Last.

Fall Back to Last Hop IP When selected, if none of the listed Header Names
are found, PingAccess will use the last hop IP address
as the source address. When cleared, if none of the
listed Header Names are found, access is denied and a
Forbidden result is returned.

Info: The PingAccess Host and Port may not be the actual host and port that Policy Server is listening to,
depending on network routing configuration and network elements such as reverse proxies and load balancers.
The PingAccess Host and PingAccess Port are where the agent sends its requests. For example, if you have
a cluster of engines behind a load balancer, the PingAccess Host and PingAccess Port values might point
to the load balancer rather than directly to an engine host in order to provide fault tolerance for the agent
connectivity.

When the Agent configuration is completed, click Save and Download to save the configuration and download
<agent-name>_bootstrap.properties for use with the PingAccess Agent.

 | PingAccess Administrator's Guide | 46

The shared secret is generated by PingAccess server and identified on this page with a timestamp. Existing secrets can
be deleted by clicking the (Remove) button in the secret field.

If an additional secret is needed, edit the agent and click Save and Download to generate and download a new
Shared Secret.

Maintaining multiple keys on the server facilitates key rotation, maintaining system availability during key updates.
The server will accept any of the defined shared secrets from the agent.

PingAccess can generate additional agent boostrap.properties files containing the specified information and a
new secret which can be used to configure the agent plugin. Existing secrets can also be re-downloaded if necessary.

To re-download an existing <agent-name>_bootstrap.properties:

1. Edit an existing agent by clicking Menu > Edit
2. Decide which specific shared secret to use. Only one shared secret can be included in the agent properties file.
3. Click Download in the shared secret field of the chosen shared secret.
4. In a new browser tab or window PingAccess will bring up the file download dialog. The file name is of the form

<agent-name>_bootstrap.properties by default.
5. Save the file, then distribute it to the intended agent installation. See either the PingAccess Agent for Apache

Installation or the PingAccess Agent for IIS Installation documentation for more information.

Policy Manager

The Policy Manager is a rich drag-and-drop interface where you can manage policies by creating Rules, building Rule
Sets, and applying Rules and Rule Sets to Applications and Resources. Policies are rules or set of rules applied to an
application and its resources. Policies define how and when a client can access target Sites. When a client attempts to
access an application resource identified in one of the policy's Rules or Rule Sets, PingAccess uses the information
contained in the policy to decide whether the client can access the application resource and whether any additional
actions need to take place prior to granting access. Rules can restrict access in a number of ways such as testing user
attributes, time of day, request IP addresses, or OAuth access token scopes. Rules can also perform request processing
such as modifying headers or rewriting URLs.

Tip: Ensure that any headers used in access control rules (such as X-Forwarded-For, which is used by
Network Range rules) are sanitized and managed exclusively by inline infrastructure that users must be routed
through before reaching PingAccess and the protected applications.

Info: Processing rules cannot be used with Agents.

Rules

Rules are the building blocks for access control and request processing. There are many types of rules, each with
different behavior and a distinct set of fields to specify the rule behavior.

Create a New Rule

1. Click the (New Rule) button in the Rule column to open the New Rule page.
2. Enter a unique Name. The name can be up to 64 characters long. Special characters and spaces are allowed.
3. Select the rule Type to use. Fields associated with that Rule type are shown.
4. Enter the required information for the type of rule you are creating.
5. Click SAVE when you finish.

https://documentation.pingidentity.com/pingaccess/paaa11/#Installation.html
https://documentation.pingidentity.com/pingaccess/paaa11/#Installation.html
https://documentation.pingidentity.com/pingaccess/paai11/#Installation.html

 | PingAccess Administrator's Guide | 47

Cross-Origin Request Rule

Cross-Origin Resource Sharing (CORS) provides a means for a web server to grant access to restricted resources
(fonts, JavaScript, images, etc.) to an application served by another domain without granting access to those resources
beyond a list of predefined origin servers.

Before a CORS request is sent, the originating web server generally sends a "pre-flight" OPTIONS request if the
request from the client includes credentials. This pre-flight request is used to determine if the target server permits
CORS requests to be processed from the originating web server.

PingAccess can be used to evaluate the headers provided in a CORS request to grant or deny access to resources.

Note: In addition to allowing PingAccess to evaluate the CORS request, you can also allow the request to
be handled by the protected application, and let PingAccess be excluded from the process of evaluating the
access request, if the target application type is API. In order to do this with a resource path that is protected
by PingAccess and requires user authentication, configure a second resource with the same path prefix, but
set the Methods field to OPTIONS and the Anonymous option needs to be cleared. This configuration allows
the API request being made to be handled anonymously.

To Configure a Cross-Origin Request Rule

1. Enter one or more Allowed Origins values, clicking to add additional values.

Important: While it is allowed, we recommend against using a value of * in this field. While this is a
valid configuration, it is considered to be an insecure practice.

2. If additional options need to be configured, expand the Advanced section of the page.
3. To permit user credentials to be used in determining access, enable Allow Credentials.
4. To modify the Allowed Request Headers values, use the following options:

• To add a new header, enter the header name, then click .
• To edit an existing header, click .
• To remove an existing header, click .

The default headers are Authorization, Content-Type, and Accept.
5. To make specific response headers available to the client that originated the cross-origin request, enter the headers

in the Exposed Response Headers field. Click to add additional headers to the list.
6. To define the Request Methods allowed in cross-origin requests, select the desired overrides in the Overridden

Request Methods field.
7. To modify the amount of time the pre-flight OPTIONS request is cached, enter the maximum age (in seconds)

desired in the OPTIONS Cache Max Age field. The default is 600 seconds.
8. Click SAVE

Rewrite Rules Overview

It is sometimes necessary to manipulate requests to Sites and their responses. PingAccess allows for the manipulation
of the Request URI, the cookie domain, the cookie path, and three of the response headers (Location, Content-
Location, and URI), as well as the response content.

For example, a Site is hosted on https://server1.internalsite.com under /content/. Users access
the Site via the following URL in their browser:

https://server1.internalsite.com/content/

For example purposes, let's say this results in a 302 Redirect to an importantContent.html page as well as
setting a domain cookie for .internalsite.com. If you protect this Site with PingAccess (using the virtual host
publicsite.com) under the application /importantstuff/, you need to rewrite the content. The information
below discusses an example scenario.

Info: This example assumes that a Virtual Host, a Site, and an Application are already configured.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.3

 | PingAccess Administrator's Guide | 48

Create a Rewrite Content Rule

A Rewrite Content Rule on page 49 alters content in the HTTP Response body.

• In the Response Content-Types field, you define a response type of text/html.
• In the Find and Replace criteria, you specify <a href="https://server1.internalsite.com/

content/"> and .
• Add the Rule to the application. A query to a page with links in it that point to https://

server1.internalsite.com/content/ now point to https://publicsite.com/
importantstuff/.

Create a Rewrite Cookie Domain Rule

A Rewrite Cookie Domain Rule allows the rewriting of the Domain field on cookies when they are set by the back-
end site.

• In the Server-Facing Cookie Domain, you enter internalsite.com.
• In the Public-Facing Cookie Domain, you enter publicsite.com.
• Add the Rule to the application.

Cookies associated with the domain publicsite.com (or .publicsite.com) are rewritten to pertain to
internalsite.com (or .internalsite.com).

Create a Rewrite Cookie Path Rule

A Rewrite Cookie Path Rule converts the cookie path returned by the Site into a public-facing path.

• In the Server-Facing Cookie Path field, you enter /content/.
• In the Public-Facing Cookie Path field, you enter /importantstuff/.
• Add the Rule to the application.

Cookies associated with a cookie path of /content/ are rewritten to pertain to /importantstuff/.
After configuring the rewrite Rules as discussed above, a user could access the https://
publicsite.com/importantstuff/ and PingAccess would route that request to https://
server1.internalsite.com/content/. If the Site sends a redirect to https://
server1.internalsite.com/content/index.html, PingAccess would return a redirect to
https://publicsite.com/importantstuff/index.html. If the Site then returned a cookie with
a domain of .internalsite.com and a path of /content/, PingAccess would rewrite that cookie to be
relevant to .publicsite.com and /importantstuff/.

Create a Rewrite Response Header Rule

A Rewrite Response Header Rule alters the response header used in the 302 Redirect.

• In the Server-Facing URI field, you enter https://server1.internalsite.com/content/.
• In the Public Path field, you enter /importantstuff/.
• Add the Rule to the application. A query resulting in a response containing a 302 Redirect to https://

server1.internalsite.com/content/ is rewritten to https://publicsite.com/
importantstuff/.

Info: This also works for relative redirects: /content/ is rewritten to /importantstuff/. It also
works for the path beneath the one defined in the URI: /content/news/index.html is rewritten to
importantstuff/news/index.htm.

Create a Rewrite URL Rule

A Rewrite URL Rule alters the Request URI.

• In the Map From field, you enter ^/importantstuff/(.*) as the regex of the URL's path and query you
want to match.

 | PingAccess Administrator's Guide | 49

• In the Map To field, you enter /content/$1.
• Add the Rule to the application. A query to https://publicsite.com/importantstuff/ results in

PingAccess routing that query to https://server1.internalsite.com/content/.

Rewrite Content Rule

Use the Rewrite Content Rule to modify text in HTTP response bodies as it is served to the client. This rule uses
a subset of the Java Regular Expression syntax that excludes look-behind constructs (for example, \b) and the
boundary matcher (\G). If no Java regular expression syntax is used, the effect is to perform a case-sensitive search
and replace. The most common use case for this rule is to rewrite host names within URLs contained in HTML,
JavaScript or CSS content.

Info: Extensive use of Rewrite Content Rules may have significant performance implications.

This rule supports content that is either chunked or streamed from the target server. When sent to the client, the
content is always chunked.

To configure a Content Rewrite Rule:

1. Name the rule.
2. Select Rewrite Content from the list.
3. Enter one or more Response Content-Types to define what type of response data the rewrite rule applies to. The

default values are text/html, text/plain, and application/json. The list is an ordered list.

Info: Only text-based content types are supported. Text-based content types compressed with gzip,
deflate, or compress will be decompressed prior to rewrite rule processing, however the content is not
then re-compressed before being sent to the client. If the originating server does not specify a content-type
header, this rule has no effect.

4. Define one or more set of Find and Replace Criteria. If multiple criteria are specified, each operation is
performed against the original content - effectively applying the rule concurrently. Changes can affect CSS,
Javascript, and other text-based elements served to the client, so it is very important to craft the regular expression
appropriately to avoid modifying content that wasn't intended.

5. (Optional) If necessary, increase the size of the buffer used to perform the replace operation by opening the
Advanced options and entering a larger buffer size.

Note: Replacement values cannot be larger than the buffer size. The minimum buffer size that can be
specified is 1024 bytes; there is no maximum value.

Examples:

Example
Description

Original
Content

Content-Type Find Criteria Replacement
Value

Modified
Text

Rewrite URL
portion of a
web link

<a
href="https://
serverx.inside.corp/
app/">

text/html serverx.inside.corpwww.acme.com<a
href="https://
www.acme.com/
app/">

Case-
sensitive text
replacement

ACMEcorp text/html Ecorp E
Corporation

ACME
Corporation

JSON Value
masking

{

 "origin":
 "127.0.0.1,
 192.168.1.1"
}

application/
json

(127.0.0.1,).*"***********"{

 "origin":
 "127.0.0.1,
 ***********"
}

 | PingAccess Administrator's Guide | 50

Example
Description

Original
Content

Content-Type Find Criteria Replacement
Value

Modified
Text

Replacing
text inside
a specified
element using
Java regex
groups

This text is
bold.

text/html (bold)</
b>

not $1 This text is not
bold.

Case-
insensitive
text
replacement
using a Java
regex match
flag

HTTP text/html (?i)http FTP FTP

Rewrite Cookie Domain Rule

Converts the cookie domain returned by the Site into a public-facing domain. For example, a Site places a cookie on
a cookie domain such as internalsite.com (or .internalsite.com). Using the information configured in
the Rewrite Cookie Domain Rule, PingAccess rewrites the Domain portion of the Set-Cookie response header
with a public-facing domain such as publicsite.com (or .publicsite.com).

Info: You should only set the cookie (in the Public-Facing Cookie Domain field) to the virtual host name
associated with that application or to a domain that is above. For example, myserver.acme.com can be
set to acme.com.

To configure a Rewrite Cookie Domain Rule:

1. Name the Rule.
2. Select Rewrite Cookie Domain from the list.
3. In the Server-Facing Cookie Domain field, enter the domain name to use in the cookie returned by the back-end

Site.
4. In the Public-Facing Cookie Domain field, enter the domain name you want to display in the response from

PingAccess.
5. Click SAVE.

Rewrite Cookie Path Rule

Converts the cookie path returned by the Site into a public-facing path. This enables the details of exposed
applications to be managed by PingAccess for security and request routing purposes. For example, a Site places a
cookie in a server-facing cookie path such as /content/. Using the information configured in the Rewrite Cookie
Path Rule, PingAccess rewrites the Path portion of the Set-Cookie response header with a public-facing cookie
path such as /importantstuff/.

To configure a Rewrite Cookie Path Rule:

1. Name the Rule.
2. Select Rewrite Cookie Path from the list.
3. In the Server-Facing Cookie Path field, enter the path name where the cookie is valid for the back-end Site.
4. In the Public-Facing Cookie Path field, enter the path name you want to display in the response from

PingAccess.
5. Click SAVE.

 | PingAccess Administrator's Guide | 51

Rewrite Response Header Rule

Converts the response header value returned by the Site into a public-facing value. This Rule rewrites one of three
response headers: Location, Content-Location, and URI. For example, the server-facing Location
response header includes a path that begins with /test-war/. Using the information configured in the Rewrite
Response Header Rule, PingAccess rewrites http://private/test-war/ with a public-facing path such as
http://public/path/.

To configure a Rewrite Response Header Rule:

1. Name the Rule.
2. Select Rewrite Response Header from the list.
3. In the Server-Facing URI box, enter the URI of the server sending the response. This must be a URI

prefix containing at a minimum the protocol and hostname port information. For example: https://
server1.internalsite.com/content/ or http://SiteHostName/path/

4. In the Public Path box, enter a valid URI path that you want to write into the URI. This must be a valid URI path
and begin and end with a slash (/). For example: /importantstuff/ or /

5. Click SAVE.

Rewrite URL Rule

Examines the URL of every request and determines if a pattern matches. For example, you define a regular expression
(regex) in the rule. If a pattern matches, PingAccess uses the information configured in the Rewrite URL Rule and
rewrites that portion of the URL into a path that the Site can understand. The following table displays four example
Rewrite URL Rule configurations:

Map From Value Map To Value Example Request Rewrite by PingAccess

/bank/ /application/ /bank/content.html /application/
content.html

^/bank/(.*) /application/$1 /bank/content.html /application/
content.html

/bank/index.html /application/
index.jsp

/bank/index.html /application/
index.jsp

/bank/index.html /application/
index.jsp

/bank/index.html?
query=stuff

/application/
index.jsp?
query=stuff

To configure a Rewrite URL Rule:

1. Name the Rule.
2. Select Rewrite URL from the drop-down list.
3. In the Map From box, enter the regex of the URL's path and the query you want to match. For example: ^/

bank/(.*) This example illustrates matching the Request-Line in the request. The Request-Line
begins with /bank/ (the ^ indicates "begins with") and places the rest of the URL into the first capture group
(for more information on regex patterns, see the Oracle Java Docs).

4. In the Map To box, enter the URL's path and query you want to generate. For example: /application/$1
This example defines the replacement string, which generates / followed by the content of the first capture group
(to better understand the use of special characters such as \ and $ in the replacement string, see the Oracle Java
Docs).

5. Click SAVE.

Groovy Script Rule

Groovy scripts provide advanced Rule logic that extends PingAccess Rule development beyond the capabilities of the
packaged rules. For more information on Groovy, see the Groovy and Groovy Scripts pages and the official Groovy
documentation.

http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html
http://docs.oracle.com/javase/6/docs/api/java/util/regex/Matcher.html#replaceAll(java.lang.String)
http://docs.oracle.com/javase/6/docs/api/java/util/regex/Matcher.html#replaceAll(java.lang.String)
http://groovy.codehaus.org/Documentation
http://groovy.codehaus.org/Documentation

 | PingAccess Administrator's Guide | 52

Note: Through Groovy scripts, PingAccess administrators can perform sensitive operations that could affect
system behavior and security.

See Advanced Fields for information about error handling.

1. Enter the Groovy Script to use for Rule evaluation. For example, to create an OAuth Scope Rule that matches
more than one scope, your Groovy script might contain: hasScopes("access","portfolio")

2. Click SAVE when you finish.

HTTP Request Header Rule

Examines a request and determines whether to grant access to a requested resource based on a match found in one of
the specified headers in the HTTP request.

Note: See Advanced Fields for information about error handling.

If more than one Field and Value pair is listed, then all conditions must match in order for the rule to succeed.

To configure an HTTP Request Header Rule:

1. In the Field column, enter a Header name you want to match in order to grant or not grant the client access. For
example: Host.

2. Enter the Value for the Header you want to match in order to grant or not grant the client access. For example:
localhost*. This value can be a Java regular expression.

Tip: If you want to match on the Host header, include both the host and port as the Value, or add a
wildcard after the hostname (host* or host:*) to match what is in the HTTP request.

3. Select Case Sensitive if the values should be matched only if the value case is an exact match.
4. Select Negate if access should be denied when a match is found.

Info: Ensure that the attribute name entered in the Field field is spelled correctly and exists. If you enter
an attribute that does not exist and you select Negate, the rule will always succeed. The Negate control
applies to the entire set of conditions specified, and passes the rule if any condition is not met.

5. If additional Header pairs are needed, click to add an additional row, then repeat steps 1-4.
6. Click SAVE.

HTTP Request Parameter Rule

Examines a request and determines whether to grant access to a requested resource based on a match found in
specified form parameters of the HTTP request.

This rule determines if the parameters are passed as part of the URL query string parameters or as part of a request
body submitted using an HTTP PUT or POST method. If the request is a POST request, the content-type must
be set to application/x-www-form-urlencoded to process the field names in the request.

If this rule is applied to an Agent configuration, only URL query string parameters are compared, because the Agent
does not receive the request body for processing.

If more than one Field and Value pair is listed, then all conditions must match in order for the rule to succeed.

Note: See Advanced Fields for information about error handling.

To configure an HTTP Request Parameter Rule:

1. In the Field column, enter a Parameter name you want to match in order to grant or not grant the client access.
For example: email.

2. Enter the Value for the field you want to match in order to grant or deny the client access. For example,
jsmith@example.com. This value can be a Java Regular Expression.

3. Select Case Sensitive if the values should be matched if the value case is an exact match.
4. Select Negate if when a match is found, access is not allowed.

 | PingAccess Administrator's Guide | 53

Info: Ensure that the field name you enter is spelled correctly and exists. If you enter a field name that
does not exist and you select Negate, the rule will always succeed. The Negate control applies to the
entire set of conditions specified, and passes the rule if any condition is not met.

5. If additional Parameters pairs are needed, click to add an additional row, then repeat steps 1-4.
6. Click SAVE.

Network Range Rule

Examines a request and determines whether to grant access to a target Site based on whether the IP address falls
within a specified range (using Classless Inter-Domain Routing notation).

Note: See Advanced Fields for information about error handling.

To configure a Network Range Rule:

1. Enter a Network Range in the field. For example, 127.0.0.1/8. PingAccess supports both IPv4 and IPv6
addresses.

2. Select Negate if when a match is found, access is not allowed.
3. Conditional: If you wish to override source address handling defined in the HTTP Requests configuration,

expand the Advanced section of the page and perform the following steps:
a) Select the Override Request IP Source Configuration option.
b) Enter the Headers used to define the Source IP address to use.
c) Select the Header Value Location to use when multiple addresses are present in the specified header. Valid

values are Last (the default) and First.
d) Select the Fall Back to Last Hop IP option to determine if, when the specified Headers are not present,

PingAccess should return a Forbidden result or if it should use the address of the previous hop as the source
to make policy decisions.

4. Additional Advanced fields for handling error responses may also be defined here. See Advanced Fields for Rules
on page 56 for more information about these fields.

5. Click SAVE.

OAuth Attribute Value Rule

Examines a request and determines whether to grant access to a target Service based on a match found between the
attributes associated with an OAuth access token and attribute values specified in the OAuth Attribute Rule.

To configure an OAuth Attribute Value Rule:

1. Enter the Attribute Name you want to match to an attribute associated with an OAuth Access token. For
example: Group.

2. In the Attribute Value box, enter a value for the attribute. For example, Sales.

Info: If you want to match more attributes, create more OAuth Attribute Value Rules or use the OAuth
Groovy Script Rule.

3. Select Negate if when a match is found, access is not allowed.

Info: Verify what you enter for the attribute. If you enter an attribute that does not exist (for example,
misspell it) and you select Negate, the rule will always succeed.

4. Click SAVE.

OAuth Groovy Script Rule

Determines whether to grant access to a target Site based on the results returned from a Groovy script that evaluates
request details and OAuth details. This Rule allows you to create more sophisticated OAuth Scope and OAuth
Attribute Value Rules.

Info: See Groovy Scripts for more information.

To configure an OAuth Groovy Script Rule:

 | PingAccess Administrator's Guide | 54

1. Enter the Groovy Script to use for Rule evaluation.
2. Conditional: If you need to specify a custom Error Response Template File, expand the Advanced section and

fill in the Error Response Template File and Error Response Content Type fields.
3. Click SAVE.

See Advanced Fields for information about error handling.

OAuth Scope Rule

Examines the contents of the PingFederate validation response and determines whether to grant access to a back-end
target Site on a match found between the scopes of the validation response and scope specified in the OAuth Scope
Rule. For example, a Resource may require that the OAuth Access Token contain the scope superuser.

Configure an OAuth Scope Rule

1. Enter the Scope you want to match to values returned from the Access Validator.

Info: This is one scope requirement in the set of scopes associated with the access token.

2. Select Negate if when a match is found, access is not allowed.
3. Click SAVE.

OAuth Rule Advanced Fields

You can customize an error message to display as part of the default oauth.error.json error page rendered in the end-
user's browser if Rule evaluation fails for an OAuth-type Rule--OAuth Attribute Value, OAuth Groovy Script, and
OAuth Scope. This page is among the templates you can modify with your own branding or other information (see
Customize User-Facing Pages).

The response status code is always 401 with an Unauthorized status message. The WWW-Authenticate header value
provides information on the OAuth credential the client needs to present. For example:

HTTP/1.1 401 Unauthorized

WWW-Authenticate: Bearer realm="test"

Use the following fields to configure the error handling template and content type.

Field Description

Error Response Template File The template page for customizing the error message
that displays if Rule evaluation fails. This template file is
located in the <PA_HOME>/conf/template/ directory.

Error Response Content Type The type of content for the error response so the client
can properly display the response.

Rate Limiting Rule

The Rate Limiting Rule allows the administrator to define access to limit a client from overloading the server with too
many requests in a specified period of time. The implementation of this rule uses a Token Bucket in order to control
the number of incoming requests.

The way this works is that the configuration defines a number of requests and an interval that must elapse between
requests. The allowed number of requests within the tine window is controlled by the Advanced > Max Burst
Requests setting. For example, if the Max Burst Requests value is 1, two requests are allowed in the request interval
— one normal request, and one burst request.

The number of allowed requests is incremented by one at the end of each Request Interval if a request was not
received. This continues until the number of allowed requests equals the value defined by the Max Burst Requests
setting.

Note: Using the Rate Limiting Rule in a clustered PingAccess environment may impose stricter clock
synchronization requirements for requests processed by multiple engine nodes. Alternatively, a load balancer

 | PingAccess Administrator's Guide | 55

sitting in front of a PingAccess cluster can be configured to stick the session to a specific engine, thus
ensuring that the rate limiting rule is applied by a single PingAccess engine node.

1. Select a Policy Granularity, as defined in the following table:

Policy Granularity Definition

Resource Restricts the rate of requests based on the resource
requested.

Identity Restricts the rate of requests to the identity associated
with the current authentication token (a PA Cookie or
an OAuth token). This is the default value.

IP Restricts the number of requests based on the source IP
address. The IP address used to apply this policy comes
from the HTTP Requests IP Source configuration
options or options that override that configuration, if
those options are configured.

OAuth Client Restricts the number of requests to all OAuth tokens
obtained by a specific Client ID.

2. Enter, in milliseconds, a Request Interval.
3. If more than 1 request should be allowed a request interval, expand the Advanced section of the page, and enter

the number of requests to allow in the Max Burst Requests field.

Note: PingAccess increases the number of available requests only after a request interval that serves
no requests to the client. As a result, in the period following a cycle where the remaining allowed burst
requests is reduced to 0, no burst requests would be allowed, regardless of this setting.

4. If PingAccess should reply to the client with a Retry-After header instructing the client to wait for a period of
time, select the Set Retry-After Header option.

5. To customize the error response sent to the client, modify the Error Response Code, Error Response Status
Message, Error Response Template File, and Error Response Content Type fields. See Advanced Fields for
Rules on page 56 for more information about these fields.

Time Range Rule

Examines a request and determines whether to grant access to a back-end target Site based on the request falling
within a defined time frame. For example, use this Rule when you want to restrict access to specific endpoints for
certain time periods, such as during the work day from 8 am to 5 pm.

To configure a Time Range Rule:

1. Enter the beginning time for the time frame in the Start Time field. For example: 8:00 AM.
2. Enter the ending time for the time frame in the End Time field. For example: 5:00 PM.

Info: If you are using Internet Explorer or Firefox, you must enter the time in 24 hour format. For
example, 5:00 PM is 17:00.

3. Select Negate if when a match is found, access is not allowed.
4. Click Save when you finish.

See Advanced Fields for information about error handling.

Web Session Attribute Rule

Examines a request and determines whether to grant access to a target Site based on an attribute value match found
within the PA Token.

To configure a Web Session Attribute Rule:

1. Enter the Attribute Name that you want to match in order to grant the client access. For example, Group.

 | PingAccess Administrator's Guide | 56

2. Enter the Attribute Value for the Attribute Name. For example, Sales. If the attribute has multiple values at
runtime, the attribute value you specify here must match one of those values.

Info: PA Token attributes are obtained from the PingFederate OpenID Connect Policy attribute contract
(see Configuring OpenID Connect Policies).

3. Click to add more attributes, or click to remove a row.
4. Select Negate to disallow access when a match is found.

Info: Ensure the attribute name is spelled correctly and exists. If you enter an attribute that does not exist
and you select Negate, the rule will always succeed.

5. Click SAVE.

Info: To use this Rule, we recommend that you leave the Request Profile checkbox selected (see Web
Sessions), indicating that you want PingAccess to request additional profile attributes from PingFederate
when requesting the ID Token.

See Advanced Fields for information about error handling.

Edit a Rule

1. Click on the Rule you want to edit and click Edit. The Edit Rule page appears with the same fields as when
the rule was created.

2. Make your edits.
3. Click SAVE.

Delete a Rule

Note: A Rule that is associated with a rule set or an application cannot be deleted.

1. Click on the Rule you want to delete and click Delete.
2. Click DELETE in the confirmation window.

Advanced Fields for Rules

You can customize an error message to display as part of the default error page rendered in the end-user's browser if
Rule evaluation fails. This page is among the templates you can modify with your own branding or other information
(see Customize User-Facing Pages). Use the following fields to configure the error handling.

Field Description

Error Response Code The HTTP status response code you want to send if Rule
evaluation fails. For example, 403.

Error Response Status Message The HTTP status response message you want to return if
Rule evaluation fails. For example, Forbidden.

Error Response Template File The HTML template page for customizing the error
message that displays if Rule evaluation fails. This
template file is located in the <PA_HOME>/conf/
template/ directory.

Error Response Content Type The type of content for the error response so the client
can properly display the response.

Error Handling Fields for OAuth Rules

You can customize an error message to display as part of the default oauth.error.json error page rendered
in the end-user's browser if Rule evaluation fails for any OAuth-type Rule (OAuth Attribute Value, OAuth Groovy
Script, or OAuth Scope). This page is among the templates you can modify with your own branding or other
information (see Customize User-Facing Pages).

http://documentation.pingidentity.com/pingfederate/pf/?contextId=help_PoliciesManagementTasklet_PoliciesManagementState

 | PingAccess Administrator's Guide | 57

The response status code is always 401 with an Unauthorized status message. The WWW-Authenticate
header value provides information on the OAuth credential the client needs to present.

For example:

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Bearer realm="test"

Use the following fields to configure the error handling template and content type.

Field Description

Error Response Template File The template page for customizing the error message
that displays if Rule evaluation fails. This template file is
located in the <PA_HOME>/conf/template/ directory.

Error Response Content Type The type of content for the error response so the client
can properly display the response.

Rule Sets

Rule Sets allow you to group multiple Rules into re-usable sets which can be applied to applications and resources.
The Rule Sets column displays available Rule Sets.

Create a Rule Set

1. Click at the top of the Rule Sets column.
2. Drag-and-drop a Rule from the Rules column onto the box that appears.
3. Enter a name for the Rule Set in the box that appears. Special characters and spaces are allowed.
4. Select as the Success Criteria to require all Rules in the set to succeed. Select to require just one of

the Rules in the set to succeed.

Info: When Success Criteria is set to Any, the first rule establishes the error handling and is flagged with
an information icon . When Success Criteria is set to All, the first rule in the set that fails establishes
the error handling.

Note: When Success Criteria is set to Any, PingAccess flags Processing Rules in a Rule Set with a
warning icon . This is considered a misconfiguration because in an Any Rule Set, the first Processing
Rule should succeed, causing all other rules in the set to not be evaluated. If you want to use Processing
Rules on protected applications as well as handle access control decisions using Any criteria, assign
Processing Rules directly to the application or create a separate Rule Set for the Processing Rules using
the All criteria."

5. Click to save the Rule Set.
6. Add more Rules.

Edit a Rule Set

1. Click on the Rule Set you want to edit and click Edit, then perform any of the following operations:

• Drag a Rule within a Rule Set up or down to re-order the Rules.
• Click on the Rule you want to remove from a Rule Set.
• Click to cancel Edit mode without saving changes.

2. Click to save your changes.

 | PingAccess Administrator's Guide | 58

Delete a Rule Set

Note: A Rule Set that is associated with an application or resource cannot be deleted

1. Click on the Rule Set you want to delete and click Delete.
2. Click DELETE in the confirmation window.

Application

Apply Rules and Rule Sets to an Application

1. Select an Application from the list.
2. Expand the application Resource.
3. Drag and drop Rules and Rule Sets onto the policy drop box that appears.

Apply a Rule Set

• Drag the Rule Set onto the drop box of an expanded application or resource to add it to create a policy.

Apply a Rule

To apply a rule to a Rule Set or application, drag the rule onto the drop box of an expanded Rule Set, Application, or
Resource.

Edit Rules and Rule Sets for Application

1. Select an Application from the list
2. Expand the application Resource
3. Drag and drop new Rules and Rule Sets onto the policy drop box.
4. Drag Rules and Rule Sets around in the box to change the order in which Rules are evaluated at runtime.

Note: Ordering Rules may enhance performance. For example, to fail faster and improve performance as
you move through PingAccess.

5. Click to remove a Rule or Rule Set from an application or resource.

Settings

The Settings pages provide access to a number of global settings that control PingAccess behavior and enable
definition of artifacts used by applications and resources.

Tip: For help in successfully configuring PingAccess to meet your use case, see Configuration by Use Case.

Access

Authentication Requirements

Authentication Requirements are policies that dictate how a user must authenticate before access is granted to a
protected Web Application. Authentication methods are string values and ordered in a list by preference. At runtime,
the type of authentication attempted is determined by the order of the authentication methods.

For example, a user attempts to access a PingAccess Web Application configured with an authentication requirement
list containing the values (password, cert). PingAccess redirects the user to PingFederate requesting either password

 | PingAccess Administrator's Guide | 59

or certificate user authentication. PingFederate authenticates the user based on the password and issues an OIDC
ID Token to PingAccess (containing the authentication method that was used). PingAccess ensures that the
authentication method matched the requirements and redirects the user to the originally requested Application with
the PA cookie set. The user navigates to the Application and access is granted. When the user attempts to access a
more sensitive Application, configured with an authentication requirement list containing the value (cert), they are
redirected to PingFederate to authenticate with a certificate.

If you configure Applications with authentication requirement lists that have no overlap. For example, one list has
(password), another list (cert), a user navigating between Applications may be required to authenticate each time they
visit an Application. When configuring authentication requirement lists to protect higher value Applications with step-
up authentication, consider including stronger forms of authentication when configuring lower value Applications.

Configure an Authentication Requirement List

1. Enter a unique name for the Authentication Requirements list. Up to 64 characters, including special characters
and spaces, are allowed.

2. Enter an authentication method. For example, cert or password.

Info: The values you enter here must match the result values defined for the Requested AuthN Context
Selector configured within PingFederate (see Configuring the Requested AuthN Context Selector).

3. Click to add the requirement.
4. Continue adding requirements.
5. Click SAVE.

Edit an Authentication Requirements List

1. Click for the list you want to edit and click Edit. The Edit Authentication Requirement page appears.
2. Make your changes.

• Click to edit an authentication requirement.
• Order the requirements by dragging and dropping them.
• Click to save edits.
• Click to exit Edit mode without saving changes.
• Click to delete an authentication requirement.

3. Click SAVE.

Delete an Authentication Requirements List

1. Click for the list you want to delete, then click Delete.
2. Click DELETE in the confirmation window.

Identity Mappings

Identity mappings make user attributes available as HTTP request headers to back-end sites that use them for
authentication. A single Identity Mapping can expose a number of attribute values. Identity Mappings are assigned to
applications.

Info: Identity Mappings replace the Web Session Header Site Authenticator available before PingAccess 3.0.

Field Description

Subject Selects which attribute is used as the subject.

Attribute Name Defines the attribute name you want to retrieve. For
example, sub.

http://documentation.pingidentity.com/pingfederate/pf/?contextId=concept_configuringRequestedAuthnContextSelector

 | PingAccess Administrator's Guide | 60

Field Description
Info: Attributes are obtained from either the PA
Token or OAuth Access Token depending on
the type of application this mapping is assigned
to. The contract thus is either the OpenID
Connect Policy for PA Token or the OAuth
Access Token Contract for access token.

Header Name Defines the HTTP request header that contains the
attribute value retrieved from the PA Token.

Info: The HTTP header you specify here is the
actual header name over the HTTP protocol,
not an environment variable interpreted format.
For example, enter the User-Agent browser
type identifying header as User-Agent, not
HTTP_USER_AGENT.

Virtual Hosts

Virtual Hosts enable PingAccess to protect multiple application domains and hosts. A Virtual Host is defined by the
host name and host port.

A wildcard (*) can be used either to define either any host (*:443, for example) or any host within a domain
(*.example.com, for example).

Prior to availability of SNI in Java 8, an HTTPS port could only present a single certificate. In order to handle
multiple Virtual Hosts you have to use a wildcard name certificate or the Subject Alternative Name (SAN) extension.
With SNI available, Virtual Hosts can present different certificates on a single HTTPS port. You can assign which
certificates (Key Pairs) are used by which Virtual Host on the HTTPS Listeners page - see HTTPS Listeners.

The Agent Resource Cache TTL advanced field is used to control PingAccess Agent resources for each virtual host.

Field Description

Host Enter the host name for the Virtual Host. For example:
myHost.com. You can use a wildcard (*) to indicate that
any host name is acceptable. A wildcard host may also
be specified (e.g. *.example.com)

Port Enter the integer port number for the Virtual Host. For
example: 1234.

Agent Resource Cache TTL Enter an integer indicating the number of seconds the
Agent can cache resources for this application. Only
applies to destination of type Agent.

Web Sessions

Web Sessions define the policy for Web application session creation, lifetime, timeouts, and their scope. Multiple
Web Sessions may be configured to scope the session to meet the needs of a target set of applications. This improves
the security model of the session by preventing unrelated applications from impersonating the end user. Use this page
to configure secure Web Sessions for use with specific applications and to configure global Web Session settings.

http://documentation.pingidentity.com/pingfederate/pf/?contextId=help_PoliciesManagementTasklet_PoliciesManagementState
http://documentation.pingidentity.com/pingfederate/pf/?contextId=help_PoliciesManagementTasklet_PoliciesManagementState
http://documentation.pingidentity.com/pingfederate/pf/?contextId=help_AccessTokenMappingTasklet_OAuthUserKey2AccessTokenMappingState
http://documentation.pingidentity.com/pingfederate/pf/?contextId=help_AccessTokenMappingTasklet_OAuthUserKey2AccessTokenMappingState
http://www.openssl.org/docs/apps/x509v3_config.html#Subject_Alternative_Name_

 | PingAccess Administrator's Guide | 61

Manage Global Web Session Settings

The table below describes the fields for configuring global Web Session settings.

Field Description

Number of Keys to Cache Indicates the number of keys you want to keep in history
for validation (the default is 3). Enter how many keys
you want to remain valid. For example, if you want to
cache three keys and the key roll interval is every 24
hours, once a key rolls, the previous key is valid for 48
more hours.

Signing Key Roll Interval (h) Indicates how often (in hours) PingAccess rolls the
signing and encryption keys. Enter how often you want
to roll the keys (the default is 24 hours). Key rollover
updates keys at regular intervals to ensure the security of
signed and encrypted PA Tokens.

Issuer A published, unique identifier to be used with the Web
session (The default is PingAccess). For example, set
the issuer to a value that more closely represents your
company. PingAccess inserts this value as the iss claim
within the PA Token.

Signing Algorithm The algorithm used to protect the integrity of the PA
Token (the default is ECDSA using P-256 Curve).
Select the signing algorithm you want to use from
the list. PingAccess uses the algorithm when creating
signed PA Tokens and when verifying signed tokens in a
request from a user’s browser. The algorithm is also used
for signing tokens in Token Mediation use cases when
PA Tokens are encrypted.

Encryption Algorithm The algorithm used to encrypt and protect the integrity
of the PA Token (the default is AES 128 with CBC
and HMAC SHA 256). Select the encryption algorithm
you want to use from the list. PingAccess uses the
algorithm when creating encrypted PA Tokens and when
verifying them from a user’s browser.

Info: Higher encryption levels are available
if the administrative console supports it. To
enable higher encryption levels, update the
administrative console JRE to support unlimited
strength security policy.

Info: In a clustered environment, be sure to
add the security policy changes to the engines
as well as the administrative console for the
cluster.

Cookie Name The name of the browser cookie to contain the PA Token
(the default is PA). Enter a name for the browser cookie.

Update Token Window (s) The number of seconds before the idle timeout is updated
in the PA token. When this time window expires,
PingAccess will reissue a new PA cookie.

 | PingAccess Administrator's Guide | 62

Web Session Fields

The table below describes the fields used to configure a Web Session. Click SAVE when you finish. A new Web
Session card appears on the Web Session page.

Field Description

Name The Web Session name. Enter a unique name. Up to 64
characters, including special characters and spaces, are
allowed.

Cookie Type The type of token you want to create. An Encrypted
JWT token uses authenticated encryption to
simultaneously provide confidentiality, integrity, and
authenticity of the PA Token. A Signed JWT token
uses asymmetric cryptography with a private/public key
pairing to verify the signed message and to confirm that
the message was not modified during transit.

Signed JWT is the default setting.

Changing this setting may affect existing ongoing
sessions, forcing the user to re-authenticate to access
protected resources.

Audience Defines who the PA Token is applicable to and is
represented as a short, unique identifier. Enter a unique
identifier between 1 and 32 characters. Requests are
rejected that contain a PA Token with an audience that
differs from what is configured in the Web Session
associated with the target application.

Changing this setting may affect existing ongoing
sessions, forcing the user to re-authenticate to access
protected resources.

OpenID Connect Login Type Defines how the user’s identity is verified based on
authentication performed by an OpenID Provider and
how additional profile claims are obtained. Three login
profiles are supported: Code and POST, and x_post.
Select a login profile.

Code

A standard OpenID Connect login flow that provides
confidentiality for sensitive user claims. In this profile
the relying party (PingAccess) makes multiple back-
channel requests in order to exchange an authorization
code for an ID Token and then exchange an access
token for additional profile claims from the UserInfo
endpoint at the provider (PingFederate). This login type
is recommended for maximum security and standards
interoperability.

POST

A login flow that uses the form_post response
mode. This flow follows the OAuth 2.0 Form Post
Response Mode draft specification. This option requires
PingFederate 7.3.

http://openid.net/specs/oauth-v2-form-post-response-mode-1_0.html
http://openid.net/specs/oauth-v2-form-post-response-mode-1_0.html

 | PingAccess Administrator's Guide | 63

Field Description
A form auto-POST response containing the ID Token
(including profile claims) is sent to PingAccess from
PingFederate via the browser after authentication.
Back-channel communication between PingAccess and
PingFederate is required for key management in order
to validate ID Tokens. This login type is recommended
for maximum performance in cases where the exchanged
claims do not contain information that should be hidden
from the end user.

Be sure to select the Implicit grant type when
configuring the OAuth Client within PingFederate (see
Configuring a Client). The ID Token Signing Algorithm
in PingFederate must be set to either one of the ECDSA
algorithms or one of the RSA algorithms.

x_post

A login flow based on OpenID Connect that passes
claims from the provider via the browser. As with the
POST login type, select the Implicit grant type and use
either one of the ECDSA algorithms or one of the RSA
algorithms as the ID Token Signing Algorithm.

Info: If PingFederate 7.3 is used in the
environment, we recommend using POST
rather than x_post, as x_post was defined by
Ping Identity prior to the development of the
OAuth 2.0 Form Post Response Mode draft
specification.

Client ID Assigned when you created the OAuth Relying Party
client within PingFederate (for more information,
see Configuring a Client in the PingFederate
documentation). Enter the unique identifier (Client ID).

Client Secret Assigned when you created the OAuth Relying Party
Client within PingFederate. Required when configuring
the Code Login Type. Enter the secret (Client Secret).

Info: The OAuth Client you use with
PingAccess Web sessions must have an OpenID
Connect policy specified (for more information
see Configuring OpenID Connect Policies in the
PingFederate documentation).

Idle Timeout (m) Defines the amount of time, in minutes, that the PA
Token remains active, when no activity is detected by the
user (the default is 60 minutes).

Enter, in minutes, the length of time you want the PA
Token to remain active when no activity is detected.
Defining an idle expiration protects against unauthorized
use of the resource by limiting the amount of time
the session remains active when not being used. For
example, idle expiration is useful when a user is no
longer at the computer and does not log out of the

http://documentation.pingidentity.com/pingfederate/pf/?contextId=help_OAuthClientManagementTasklet_OAuthClientManagementState
http://documentation.pingidentity.com/pingfederate/pf/?contextId=help_OAuthClientManagementTasklet_OAuthClientManagementState
http://documentation.pingidentity.com/pingfederate/pf/?contextId=help_PoliciesManagementTasklet_PoliciesManagementState

 | PingAccess Administrator's Guide | 64

Field Description
session. When the idle expiration is reached, the session
automatically terminates.

Info: If there is an existing valid PingFederate
session for the user, an idle time out of the
PingAccess session may result in its re-
establishment without forcing the user to log in
again.

Max Timeout (m) Defines the maximum amount of time, in minutes,
that the PA Token remains active (the default is 240
minutes). Enter, in minutes, the length of time you want
the PA Token to remain active. Once the PA Token
expires, an authenticated user must re-authenticate. This
protects against unauthorized use of a resource, ensuring
that a session ends after the specified time and requiring
the user to re-authenticate to continue.

Note: This value needs to be set to a
smaller value than the PingFederate Access
Token Lifetime defined in the PingFederate
Access Token Management instance. See
Configuring Reference-Token Management in
the PingFederate Administrator's Manual for
more information.

The following Advanced fields are also available in the Web Session configuration:

Field Description

Cookie Domain The valid domain where the cookie is stored.
Enter a valid domain for the cookie. For example,
corp.yourcompany.com.

Info: If you set the Cookie Domain, all of your
web resources must reside within that domain.
If you do not set the Cookie Domain, the PA
Token is recreated for each host domain where
you access applications.

Secure Cookie Indicates that the PingAccess cookie must be sent using
only HTTPS connections. Selected by default.

Note: Setting an invalid Cookie Domain or
selecting Secure Cookie in a non-HTTPS
environment causes authentication to fail. This
results in PingAccess re-directing the user to re-
authenticate with PingFederate indefinitely.

HTTP-Only Cookie When selected (the default), enables the HttpOnly flag
on cookies that contain the PA Token. An HttpOnly
flagged cookie is not accessible using non-HTTP
methods such as calls via JavaScript (for example,
referencing document.cookie) and therefore cannot
be easily stolen via cross-site scripting.

Request Profile When selected (the default), PingAccess requests
additional profile attributes from PingFederate when

http://documentation.pingidentity.com/pingfederate/pf80/index.shtml#task_configuringReferenceTokenManagement.html

 | PingAccess Administrator's Guide | 65

Field Description
requesting the ID Token. To use this feature, you
must have a profile scope set up in PingFederate (see
Configuring a Client). The profile scope is a standard
OpenID Connect-defined scope that defines extended
claims about a user.

Note: The user can access all attributes by
examining browser traces. While they are
integrity protected to prevent changes, any
sensitive or confidential attributes can be viewed
should the user decode the ID Token's value.

Validate Session When selected, PingAccess will validate sessions with
the configured PingFederate instance during request
processing. Use of this feature requires additional
configuration in PingFederate (see Configure Server-
Side Session Management). This option is not selected by
default.

Changing this setting may affect existing ongoing
sessions, forcing the user to re-authenticate to access
protected resources.

Refresh User Attributes When enabled, PingAccess will periodically contact
PingFederate to update user data used in evaluating
policy claims. This option works in conjunction with
the PingAccess Web Session Management features
to automatically require user re-authentication if user
attribute data used as issuance criteria for a token in
PingFederate causes the token to be revoked.

For example, if the PingFederate OpenID Connect Policy
has issuance criteria configured to only issue a token if
the account is enabled, enabling this Web Session option
allows PingAccess to terminate the session the next
time the user accesses a protected resource if the user's
account was disabled in the user datastore.

The refresh interval determines the length of
time the user data is cached, so the effect of a
change that results in a session being terminated
may take up to 60 seconds (by default) to take
effect. This interval can be tuned by adding
pa.websession.refreshSessionInterval to
conf/run.properties and assigning it a value in
seconds.

Changing this setting may affect existing ongoing
sessions, forcing the user to re-authenticate to access
protected resources.

This option is selected by default.

Cache User Attributes When enabled, this option causes PingAccess to cache
user attributes internally for use in policy decisions.
By doing this, an attribute list that is longer than the
maximum cookie size can contain information used to
evaluate access requests. In practice, this is 4096 bytes,

http://documentation.pingidentity.com/pingfederate/pf/?contextId=help_OAuthClientManagementTasklet_OAuthClientManagementState

 | PingAccess Administrator's Guide | 66

Field Description
although the maximum cookie size can vary depending
on the browser.

When this option is disabled, user attribute data is
encoded, signed or encrypted (depending on the web
session cookie type), and stored in the browser's cookie
store. The information is sent from the browser back to
PingAccess with each request.

Changing this setting may affect existing ongoing
sessions, forcing the user to re-authenticate to access
protected resources.

This option is not selected by default.

Consult Server Duration (s) Defines the maximum amount of time, in seconds, that
a PingAccess Agent caches policy decisions for the web
session before sending a request to the Policy Server.
This option only applies to agents.

Info: The value used for this setting should
not be larger than the Idle Timeout value, and
ideally, should be defined to be a value less than
half the timeout.

Application Scoped Web Sessions

PingAccess Tokens can be configured to have their Web Sessions scoped to a specific application. This improves the
security model of the session by preventing unrelated applications from impersonating the end user.

Several controls exist to scope the PA Token to an application:

Audience Attribute
The audience attribute defines who the token is applicable to and is represented as a short, unique identifier.
Requests are rejected that contain a PA Token with an audience that differs from what is configured in the Web
Session associated with the target Resource.

Audience Suffix
The audience attribute is also used as a suffix of the cookie name to ensure uniqueness. For example,
PA.businessAppAudience.

Cookie Domain
The cookie domain can also optionally be set to limit where the PA Token is sent.

Info: In addition to these controls, parameters such as session timeout can be adjusted to match the policy
requirements of each application.

Corresponding OAuth clients must be defined in PingFederate for each Web Session. Redirect URL whitelists
defined in PingFederate dictate from which servers and domains the session can originate. Controlling this within
PingFederate enables flexibility of the attribute contract (and its fulfillment) for that particular application. This
ensures that each application and its associated policies only deal with attributes related to it.

Create a Web Session

1. On the Web Session page, click NEW WEB SESSION.
2. Enter the requested information on the form.
3. Click SAVE. A new card appears for the Web Session on the Web Session Page.

Edit a Web Session

 | PingAccess Administrator's Guide | 67

1. Click on the Web Session you want to edit and click Edit.
2. Make your edits.
3. Click SAVE.

Delete a Web Session

Info: If the Web Session is currently associated with an application, you cannot delete it.

1. Click on the Web Session you want to delete and click Delete.
2. Click DELETE in the confirmation window.

Configure Server-Side Session Management

There are two ways Server-Side Session Management can be implemented:

• PingAccess can reject a PingAccess cookie associated with a PingFederate session that has been invalidated as a
result of an end-user driven logout.

• The end user can initiate a logout from all PingAccess issued web sessions using a centralized logout.

The first of these scenarios provides increases both scalability and security, ensuring the PingFederate session is
terminated and that subsequent session validation requests are rejected. This scenario implies a user logout from
PingAccess protected resources through the invalidation of the related PingFederate session.

The second scenario provides improved performance and end user experience. When the user explicitly logs
out of the PingAccess issued session, all related PingAccess cookies are deleted, ensuring the client is no longer
authenticated to resources protected by PingAccess. In this scenario, the user has explicitly logged out from all of
those protected services.

PingAccess needs to be configured only for the first of these two scenarios. These options are not mutually exclusive,
and can be combined to provide comprehensive session management at the server.

Configure PingFederate for Session Management

To configure PingFederate to be able to revoke PingAccess session cookies:

1. Log in to the PingFederate Administrative Console
2. Navigate to Server Settings > Roles & Protocols
3. Ensure that Enable OAuth 2.0 Authorization Server (AS) role and OpenID Connect are enabled. Create or

modify an existing client.
4. From the main administration page, go to OAuth Settings > Authorization Server Settings
5. Return to the main administration page, then go to OAuth Settings > Client Management
6. Create or modify an existing client.
7. Ensure that "Client Secret" is selected and enter a client secret to be used by PingAccess for authentication.
8. In the OpenID Connect section of the client's configuration page, enable "Grant Access to Session Revocation

API."

Note: This setting is the main setting that enables the server-side session management feature in
PingFederate.

9. Click SAVE to save your changes.

Configure PingFederate For User-Initiated Single Logout

1. Select "Track User Sessions for Logout" under "OpenID Connect Settings"
2. In the OpenID Connect Policy Management page, select the policy, then enable the "Include Session Identifier in

ID Token" option. (For more information about configuring an OpenID Connect Policy, see Configuring OpenID
Connect Policies in the PingFederate Administrator's Manual.)

http://documentation.pingidentity.com/pingfederate/pf/?contextId=help_PoliciesManagementTasklet_PoliciesManagementState
http://documentation.pingidentity.com/pingfederate/pf/?contextId=help_PoliciesManagementTasklet_PoliciesManagementState

 | PingAccess Administrator's Guide | 68

3. In the OpenID Connect section of the client's configuration page, enable PingAccess Logout Capable. Note that
this setting is only available if you enabled the "Track user Sessions for Logout."

PingFederate is now configured to provide PingAccess with access to the PingFederate-managed session.

Configure PingAccess for Server-Side Session Management

To configure PingAccess:

1. Log in to the PingAccess administrative console
2. Click Settings > Web Session
3. Either create a new web session or edit an existing web session
4. In the Client ID field, enter the client name defined in PingFederate
5. Enter the client secret associated with the specified Client ID
6. Select Validate Session to enable the server-side session management feature
7. Click SAVE

Networking

Availability Profiles

Availability Profiles are used in a Site configuration to define how PingAccess classifies a backend target server as
failed. Sites require the selection of an availability profile, even if only one target is provided.

A connection failure can be determined based on whether a backend target is not responding, or based on specified
HTTP status codes that should be treated as failures of a specific backend target. For example, if a backend target is
responding to requests with a "500 Server Error" status, it may be desirable to consider that server down even though
the web service is responsive.

If multiple targets are specified in a site configuration but a load balancing strategy is not applied, then the
Availability Profile will cause the first listed target in the site configuration to be used unless it fails. Secondary
targets will only be used if the first target is not available.

Currently, the only availability profile type is On-Demand. You may wish to create different profiles for different
sites based on differing site needs for retry counts, retry delays, timeouts, or HTTP status codes.

Configure a New Availability Profile

1. Go to Settings > Availability Profiles, then click NEW AVAILABILITY PROFILE.
2. Enter a unique descriptive name for the profile.
3. Select the On-Demand Type.
4. Enter the number of milliseconds to wait for a connection to be established to a backend target in the Connect

Timeout (ms) field.
5. Enter the number of times to retry a connection to a backend target before considering the target failed in the Max

Retries field.
6. Enter the number of milliseconds to wait between retries in the Retry Delay (ms) field.
7. Enter the number of seconds to wait before trying a failed target again in the Failed Retry Timeout (s) field.
8. Optionally enter a list of HTTP status codes that should be considered as a failure in the Failure HTTP Status

Codes field. The sequence for this list is not important.

Edit an Existing Availability Profile

1. Go to Settings > Availability Profiles, click the icon in the upper right corner of the desired profile, then click
Edit.

2. Make any desired changes to the profile.

 | PingAccess Administrator's Guide | 69

3. Click SAVE to save your changes.

HTTP Requests

The settings for HTTP Requests are used to match a served resource with the originating client when one or more
reverse proxies are between the client and the served resource. For example, when a reverse proxy sits between the
client and the PingAccess server or a PingAccess agent, the additional proxy might be identified as the client. Such
proxies can be configured to inject additional headers to relay the originating client address. The settings on this page
allow PingAccess to be configured to identify the originating client's address using a list of alternative headers. These
settings are used by the PingAccess Policy Server when evaluating network range rules as well as the inIpRange()
Groovy script matcher.

The list of header names for the IP Source and Host Source sections is an ordered list, with the first header match
being used. By default, X-Forwarded-For is configured for IP Source requests, and both X-Forwarded-Host
and Host are configured for Host Source requests.

Info: The IP Source address settings only affect PingAccess as a Gateway; Agents will always use the
address for the last hop.

In addition, the Protocol Source section can be used to define the header used to identify the protocol used for the
original request. The default value is X-Forwarded-Proto.

Configure an Alternative IP Source Header

1. Enter a header name to search for in the Header Names list.
2. Select either First or Last for the List Value Location to determine whether, when a list of values is in the

header, the first value or the last value in the list should be used as the IP Source value. The default value is Last.
3. Enable or Disable the Fallback to Last Hop IP checkbox to determine, if none of the listed headers is present in

the request, whether the upstream IP address should be used for rule evaluation. If this value is disabled and no
headers match, the network range rule will return a Forbidden status.

4. Click SAVE.

Configure an Alternative Host Source Header

1. Enter a header name to search for in the Header Names list.
2. Select either First or Last for the List Value Location to determine, when a list of values is in the header, if

the first value or the last value in the list should be used as the Host Source value. The default value is Last.
3. Click SAVE.

Configure an Alternative Protocol Source Header

1. If necessary, expand the Protocol Source section of the page.
2. Enter a header name in the Header Name field.
3. Click SAVE.

Listeners

The Listeners configuration page is used to assign key pairs to the administrative, agent, and engine listeners, as well
as to define additional listener ports for the PingAccess engine.

HTTPS Listeners

PingAccess listens for HTTP requests on the ADMIN, ENGINE, and AGENT ports. When HTTPS is enabled for
these listeners in run.properties, a key pair must be assigned to the listener. See Key Pairs on page 73 for

 | PingAccess Administrator's Guide | 70

information on setting up a key pair. By default, the listeners are configured for HTTPS and use pre-generated key
pairs associated with localhost.

The listeners are defined as follows:

HTTPS Listener Setting in run.properties to
Enable HTTPS

Purpose

ADMIN N/A Listens for requests for the
administrative user interface and the
PingAccess REST APIs.

Note: The ADMIN listener
always listens using HTTPS.

AGENT agent.secure Listens for requests from PingAccess
Agents running on Apache or IIS
web servers.

ENGINE engine.secure Listens for HTTP or HTTPS requests
that are proxied to target web servers
associated with Sites on page 40.

Info: Changes to the ENGINE Listener and Virtual Host Key Pairs assignments become effective
immediately. Changes to the ADMIN and AGENT Listener Key Pairs require a restart of each PingAccess
instance (engine nodes as well as the replica administrative node, if configured) in a clustered deployment.

Assign a Key Pair to a Listener

1. Click the context menu icon to the right of the listener , then select Edit.
2. Select the desired Key Pair from the list.
3. Click SAVE.

Engine Key Pairs

If PingAccess is running under Java 8, the Engine Key Pairs section of the page can be used to assign a key pair to a
specific virtual host. Virtual hosts cannot be wildcard hosts, but must include a specific hostname and port. Assigning
Key Pairs to Virtual Hosts is useful in situations where the main ENGINE listener Key Pair would not be valid for
client TLS handshakes for requests bound for all virtual hosts protected by PingAccess. For example, if the main
ENGINE Key Pair is not a wildcard certificate, or does not contain every virtual host name in the Subject Alternative
Name (SAN) extension.

A Virtual Host may have only one Key Pair assigned to it.

Assign a Key Pair to a Virtual Host

1. Expand the Engine Key Pairs section of the page.
2. Click the edit icon in the row the desired key pair appears in.
3. In the Virtual Hosts field, select the host or hosts the key pair should be used for.
4. Click the save icon.

Engine Listeners

The Engine Listeners section lists the different ports that the PingAccess Engine listens for incoming client
requests. By default, an engine listener is bound to all addresses (specified as an address of "0.0.0.0") on port
3000. The address binding can be changed in the engine's run.properties configuration file by changing the
engine.http.bindAddress property.

Info: The listener port is different from the Virtual Host configuration used by Application objects in
PingAccess. For example, a listener listening on port 3000 can handle requests on port 443 if the client
sends a request to a reverse proxy or other port forwarding device that redirects the traffic to port 3000 on

http://www.openssl.org/docs/apps/x509v3_config.html#Subject_Alternative_Name_
http://www.openssl.org/docs/apps/x509v3_config.html#Subject_Alternative_Name_

 | PingAccess Administrator's Guide | 71

the Engine. The Host header is used to determine which Virtual Host heard the request (and thus, which
Application the client requested), regardless of the Engine listener port that receives the request. See HTTP
Requests on page 69 for more information about this header.

Define an Engine Listener

1. Click NEW ENGINE LISTENER.
2. Enter a descriptive name for the listener.
3. Enter the port the listener will open.

Info: Remember to open the port in the system firewall, or the listener will not be able to process any
incoming requests.

4. If the port should listen for HTTP connections, clear the Secure option.

Note: By default, engine listeners listen for HTTPS connections to protect sensitive data.

5. Click SAVE.

Load Balancing Strategies

Load Balancing Strategies are used in a Site configuration to distribute the load between multiple backend target
servers. Load balancing settings are optional, and only available if more than one target is listed for a site. This
functionality can replace a load balancer appliance between the PingAccess engine nodes and the target servers,
allowing for a simpler network architecture.

The load balancing strategies currently available are Header-Based and Round Robin.

The Header-Based strategy requires a header be included in the request that defines the target to select from the
Site configuration. This strategy has an option to fall back if the requested target is unavailable, or if the header is
missing from the request.

The Round Robin strategy has a sticky session option that permits a browser session to be pinned to a persistent
backend target. This strategy works in conjunction with the availability profile to select a target based on its
availability, and the load balancer will not select a target that is in a failed state.

Configure a Load Balancing Strategy

1. Go to Settings > Networking > Load Balancing Strategies
2. Click NEW LOAD BALANCING STRATEGY
3. Enter a unique descriptive name for the strategy
4. Select either Header-Based or Round Robin for the Type
5. Configure the options for the selected Load Balancing Strategy type:

• For a Header-Based Load Balancing Strategy:

1. In the Header Name field, enter the name of the header that contains the selected target host.
2. If desired, expand the Advanced section and select the Fall Back to First Available Host option to tell

PingAccess to use the first available target defined for the site if the target specified in the header is not
available or if the header is not present in the request.

Note: If this option is not enabled and the specified target is not available or the request header is
not present, the client will receive a Service Unavailable response.

• For a Round Robin Load Balancing Strategy:

1. If browser sessions should not be pinned to a persistent backend target, deselect the Sticky Session
Enabled option. This option is enabled by default.

2. If the Sticky Session Enabled option is enabled, enter a cookie name to use in the Cookie Name field.
This cookie is used by the PingAccess engine to track the persistent backend targets for a session.

 | PingAccess Administrator's Guide | 72

Note: When a web session is defined, the Cookie Name field defines a cookie prefix to use. The
rest of the cookie name comes from the Audience field in the Web Session.

Edit a Load Balancing Strategy

1. Go to Settings > Networking > Load Balancing Strategies
2. Click the menu icon in the upper right corner of the desired profile, then click Edit.
3. Make any desired changes to the profile.
4. Click SAVE. Changes are immediately applied to the configuration.

Security

Certificates

Administrators import certificates into PingAccess to establish anchors used to define trust to certificates presented
during secure HTTPS connections. Outbound secure HTTPS connections such as communication with PingFederate
for OAuth access token validation, identity mediation, and communication with a target Site require a certificate
trusted by PingAccess. If one does not exist, communication is not allowed.

Certificates used by PingAccess may be issued by a CA or self-signed. CA-issued certificates are recommended to
simplify trust establishment and minimize routine certificate management operations. Implementations of an X.509-
based PKI (PKIX) typically have a set of root CAs that are trusted, and the root certificates are used to establish
chains of trust to certificates presented by a client or a server during communication.

The following formats for X.509 certificates are supported:

• Base64 encoded DER (PEM)
• Binary encoded DER

A Certificate Group is a trusted set of anchor certificates used when authenticating outbound secure HTTPS
connections. The Java Trust Store group contains all the certificates included in the keystore located in the Java
installation at $JAVA_HOME/lib/security/cacerts. This group of certificates contains well-known, trusted
CAs. If you are connecting to Sites that make use of certificates signed by a CA in the Java Trust Store, you do not
need to create an additional Trusted Certificate Group for that CA. You cannot manage the Java Trust Store group
from the PingAccess administrative console. Expand a section for steps to import and manage certificates and create
and manage trusted certificate groups.

Import a Certificate

1. Click . The New Certificate page appears.
2. Click CHOOSE FILE to locate the certificate.
3. Highlight the file, then click Open.
4. Click SAVE to import the certificate. A new certificate row appears on the Certificates page.

Note: If the Certificate is either expired or not yet valid, PingAccess displays a warning, but the import
will proceed.

Delete a Certificate

1. Click on the certificate you want to delete, then click Delete.
2. Click DELETE in the confirmation window.

Info: If the certificate is associated with a Trusted Certificate Group, you cannot delete it.

Add Certificate to a Trusted Certificate Group

 | PingAccess Administrator's Guide | 73

1. Hover the cursor over the certificate row you want to move. The move cursor appears.
2. Drag and drop the certificate onto the Trusted Certificate Group.

Create a Trusted Certificate Group

1. Click to create a new Trusted Certificate Group.
2. Drag-and-drop a certificate onto the box that appears. A new group appears at the bottom of the Trusted

Certificate Groups list.
3. Enter a name for the group in the box that appears.
4. Drag-and-drop more certificates onto the Certificates box for the group.
5. Select the Use Java Trust Store checkbox to set the new group to include the Java Trust Store group. For

example, if you create your own intermediate CA certificate that is signed by a well-known CA in the Java Trust
Store.

6. Select the Skip certificate date checks checkbox to allow PingAccess to ignore date-related errors for certificates
that are not yet valid or have expired.

7. Click to save the group.

Edit a Trusted Certificate Group

1. Click for the group you want to edit and click Edit.

• Edit the group name and optionally set it to include the Java Trust Store group. For example, if you create your
own intermediate CA certificate that is signed by a well-known CA in the Java Trust Store.

• Expand the group and drag-and-drop certificates onto the Certificates box.
• Click for a certificate you want to remove.
• Click to exit Edit mode without saving changes.

2. Click to save your changes.

Remove Certificate from a Trusted Certificate Group

1. Expand the Trusted Certificate Group containing the certificate you want to remove.
2. Click on the certificate you want to remove.

Delete a Trusted Certificate Group

1. Click on the group you want to remove and click Delete.
2. Click DELETE in the confirmation window.

Key Pairs

PingAccess provides built-in Key Pairs, which are required for secure HTTPS communication. A Key Pair includes
a private key and an X.509 certificate. The certificate includes a public key and the metadata about the owner of the
private key.

PingAccess listens for client requests on the administrative console port and on the PingAccess engine port. To enable
these ports for HTTPS, the first time you start up PingAccess, it generates and assigns a Key Pair for each port. These
generated Key Pairs are initially assigned on the HTTPS Listeners page.

Additionally, Key Pairs are used by the Mutual TLS Site Authenticator to authenticate PingAccess to a target Site.
When initiating communication, PingAccess presents the client certificate from a Key Pair to the Site during the
mutual TLS transaction. The Site must be able to trust this certificate in order for authentication to succeed..

Info: Ensure that the administrative console node and engines in a cluster have the same cryptographic
configuration. For example, if you generate an elliptic curve Key Pair on the administrative console and the

 | PingAccess Administrator's Guide | 74

engines in the cluster are not configured to support elliptic curve Key Pairs, then the engines are not able
to use that Key Pair for the engine HTTPS Listeners or as the Key Pair in a Mutual TLS Site Authenticator.
Cryptographic configuration differences are often caused by having a Java Cryptographic Extension with
limited strength providers installed (see the Oracle Java documentation for more information).

Use this page to manage Key Pairs and to import or generate additional Key Pairs to secure access to the PingAccess
administrative console and for incoming HTTPS requests at runtime as well as for use with the Mutual TLS Site
Authenticator.

Import an Existing Key Pair

Use this function to import a Key Pair from a PKCS#12 file. Click IMPORT and enter the requested information on
the form.

1. In the Alias field, enter a name that identifies the Key Pair. Special characters and spaces are allowed. This name
identifies the Key Pair when assigning the Key Pair to various configurations such as HTTPS Listeners.

2. Enter the Password used to protect the PKCS#12 file. PingAccess uses the password to read the file.
3. Click CHOOSE FILE to locate the PKCS#12 file.
4. Highlight the file and click Open.
5. Click SAVE to import the file.

Note: If the Key Pair is either expired or not yet valid, PingAccess displays a warning, but the import will
proceed.

Generate a New Key Pair

Use this function to generate a Key Pair and the self-signed certificate.

1. Click NEW KEY PAIR
2. Enter the fields required for the Key Pair.
3. Click SAVE.

Generate a Certificate Signing Request

Generate a Certificate Signing Request (CSR) to establish more security and trust than using a self-signed certificate.

1. Go to Settings > Security > Key Pairs and click the menu button on a defined key pair.
2. Click Generate CSR. PingAccess automatically generates a CSR file.
3. Save the file on your system.
4. Provide this file to a Certificate Authority (CA). The CA signs the file and provides a CSR Response that you

can upload and use to replace the self-signed certificate. If the CA is well known, its certificates are installed by
default in most browsers, and the user is not prompted to trust an unknown certificate.

Import a Certificate Signing Request Response

Import a CSR Response to replace the self-signed certificate in a Key Pair. Click CSR Response and fill out the
form.

Note: Before you import the CSR Response, import the signing CA certificate into PingAccess and add it to
a Trusted Certificate Group.

1. Select the Trusted Certificate Group to use for validating that the certificate in the CSR Response is correctly
formed.

2. Choose the CSR Response file.
3. UPLOAD the file.

Download a Certificate

Download a certificate when you need to configure a peer to trust a certificate used by PingAccess. For example,
download the certificate for the Key Pair used by a Mutual TLS Site Authenticator and configure the target Site to
trust the certificate.

http://docs.oracle.com/javase/7/docs/technotes/guides/security/SunProviders.html#importlimits

 | PingAccess Administrator's Guide | 75

1. Click Download Cert. PingAccess automatically downloads the certificate from the Key Pair.
2. Save the file on your system.

Delete a Key Pair

Info: If a Key Pair is currently in use, you cannot delete it.

1. To delete a Key Pair, click Delete .
2. Click DELETE in the confirmation window. PingAccess removes the Key Pair from the system.

System

Admin Authentication

The default PingAccess administrator authentication method used to protect the administrative console is basic
authentication (username and password). Change the default method to any PingAccess supported authentication
method using the Settings > System > Admin Authentication page.

Info: We recommend changing the default administrator authentication method to Single Sign-On (SSO)
Authentication, leveraging the OpenID Connect Provider (OP) features of PingFederate to manage multiple
administrators.

Basic Authentication

The authentication default for the PingAccess administrative console is HTTP Basic Authentication. Basic
Authentication uses the HTTP Authorization header to transmit the username and password credentials. The
PingAccess server response contains a PA_UI cookie, which is a signed JSON Web Token. Subsequent HTTP
requests send this cookie for authentication rather than the less secure HTTP Authorization header. Basic
Authentication supports one user – Administrator. To change the Administrator password, click and click
Edit to access the Basic Authentication page. You will need the existing Administrator password, and the new
password must meet the configured password complexity rules defined in pa.admin.user.password.regex
in run.properties.

Single Sign-On (SSO) Authentication

There are several configuration steps required within the PingFederate Authorization Server (AS) as well
as PingAccess that you must complete to enable SSO. Expand a section to view those configurations. The
Administrative SSO option can be configured to require a specific authentication mechanism, leveraging the
PingFederate Requested AuthN Context Selector using the PingAccess Authentication Requirements options.

Info: When you enable SSO Authentication, administrative timeouts are controlled by the
following settings in the run.properties file: pa.ui.idleExpirationInMinutes,
pa.ui.maxExpirationInMinutes, and pa.ui.expirationWarningInMinutes (see
Configuration Properties).

Tip: To define a fall back administrator authentication method should PingFederate be unreachable, enable
the admin.auth=native property in the run.properties file. This overrides any configured
administrative authentication to Basic Authentication.

Prior to configuring Administrator SSO, it is necessary to ensure that the PingFederate server certificate has been
imported into PingAccess and assigned to a Trusted Certificate Group, and the Trusted Certificate Group needs to be
correctly associated with the PingFederate Runtime configuration.

Configure SSO Authentication in PingAccess

Use the Single Sign-On (SSO) Authentication page in PingAccess to enter the Client ID for the OAuth Client you
created in the PingFederate AS.

Info: Be sure to complete the configuration for connecting to the PingFederate OAuth AS on the
PingFederate page as well as completing the steps below.

 | PingAccess Administrator's Guide | 76

1. Enter the unique identifier (Client ID) assigned when you created the OAuth client for use with SSO (for more
information, see Configuring a Client in the PingFederate documentation).
When configuring the client in PingFederate, make sure you have the following options selected:

• The Client Authentication must be set to None
• The Allowed Grant Types must be set to Implicit
• The Redirect URIs must include https://<PA_Admin_Host>:<PA_Admin_Port>/*
• The OpenID Connect Policy should be set to a policy that uses issuance criteria to restrict access based on

some additional criteria.

Warning: If the selected OpenID Connect Policy does not use issuance criteria to limit which users
can be granted an access token, ALL users in the associated identity store configured in PingFederate
will be able to authenticate to the PingAccess Admin console and make changes. See Identifying
Issuance Criteria for Policy Mapping in the PingAccess Administrator's Manual.

2. Select a defined Authentication Requirements list, if your environment requires it.
3. Select Enabled to activate SSO Authentication.
4. Click SAVE when you finish.

Configure API Authentication

Info: For more information on the PingAccess Administrative API, see Administrative API Endpoints

1. Enter the unique identifier (Client ID) assigned when you created the OAuth client for validating OAuth access
tokens (for more information, see Configuring a Client in the PingFederate documentation).

2. Enter the secret (Client Secret) assigned when you created the OAuth client for validating OAuth access tokens
(for more information, see Configuring a Client in the PingFederate documentation).

3. Enter the Scope required to successfully access the API. For example, admin. For more information, see
Authorization Server Settings for defining scopes.

4. Select Enabled to activate API Authentication.

Configuration Export/Import

The Configuration Export/Import options create and restore a full PingAccess configuration, allowing it to be backed
up and restored into a test environment for testing, or to be used for disaster recovery. The configuration backup is
stored as a json file, and contains the entire PingAccess configuration.

Caution: As the exported json file contains your complete PingAccess configuration, ensure the file is
stored somewhere with appropriate security controls in place.

Export PingAccess Configuration

To Export the PingAccess Configuration

1. Navigate to Settings > System > Configuration Export/Import
2. Click EXPORT to download your PingAccess configuration. The download filename is pa-

data-<timestamp>.json

Note: The <timestamp> value is formatted MM-DD-YYYY.hh.mm.ss - so a date and time of January
31, 2015 1:35 PM would be encoded as 01-31-2015.13.35.00 in the filename.

Import PingAccess Configuration

The Import Configuration option is a version-specific tool used to import a previously exported configuration.
PingAccess checks the exported json file to ensure that the file came from the same version of PingAccess that it is
being imported into.

To Import a PingAccess Configuration:

1. Navigate to Settings > System > Configuration Export/Import

http://documentation.pingidentity.com/pingfederate/pf/?contextId=help_OAuthClientManagementTasklet_OAuthClientManagementState
http://documentation.pingidentity.com/pingfederate/pf/?contextId=help_PolicyManagementTasklet_PolicyIssuanceCriteriaState
http://documentation.pingidentity.com/pingfederate/pf/?contextId=help_PolicyManagementTasklet_PolicyIssuanceCriteriaState
http://documentation.pingidentity.com/pingfederate/pf/?contextId=help_OAuthClientManagementTasklet_OAuthClientManagementState
http://documentation.pingidentity.com/pingfederate/pf/?contextId=help_OAuthClientManagementTasklet_OAuthClientManagementState
http://documentation.pingidentity.com/pingfederate/pf/?contextId=help_AuthorizationServerSettingsTasklet_OAuthAuthorizationServerSettingsState

 | PingAccess Administrator's Guide | 77

2. Click CHOOSE FILE
3. Select the json export file containing the configuration to import
4. Click IMPORT to start the import process
5. When prompted by the configuration dialog, click OK

Important: This operation is destructive, and overwrites your entire PingAccess configuration.
Passwords in the system will revert to what they were when the backup was created. Unless you perform
a backup prior to restoring a different configuration, the configuration prior to clicking OK will not be
recoverable.

6. Conditional: If the Agent or Admin listener key pairs change as a result of the import operation, restart
PingAccess.

7. Conditional: If the environment is clustered, ensure that the engines are using the proper engine keys. If they are
not, re-save the engine to generate a new public key, and reconfigure the engine to use the newly generated key.

Clustering

PingAccess provides clustering features that allow a group of PingAccess servers to appear as a single system. When
deployed appropriately, server clustering can facilitate high availability of critical services. Clustering can also
increase performance and overall system throughput. It is important to understand, however, that availability and
performance are often at opposite ends of the deployment spectrum. Thus, you may need to make some configuration
tradeoffs that balance availability with performance to accommodate specific deployment goals.

In a cluster, you can configure each PingAccess engine, or node, as an administrative console, a replica administrative
console, or a runtime engine in the run.properties file. Runtime engines service client requests, while the
console server administers policy and configuration for the entire cluster (via the administrative console). The replica
administrative console provides a backup copy of the information on the administrative node in the event of a non-
recoverable failure of the administrative console node. A cluster may contain one or more runtime nodes, but only
one console node and only one replica console node. Server-specific configuration data is stored in the PingAccess
administrative console server in the run.properties file. Information needed to bootstrap an engine is stored in the
bootstrap.properties file on each engine.

At startup, a PingAccess engine node in a cluster checks its local configuration and then makes a call to the
administrative console to check for changes. How often each engine in a cluster checks the console for changes is
configurable in the engine run.properties file.

Configuration information is replicated to all engine nodes. By default, engines do not share runtime state. For
increased performance, you can configure engines to share runtime state by configuring cluster interprocess
communication using the run.properties file (see Cluster Configuration Settings).

Info: Runtime state clustering consists solely of a shared cache of security tokens acquired from the
PingFederate STS for Token Mediation use cases using the Token Mediator Site Authenticator.

Engine nodes include a status indicator that indicates the health of the node and a Last Updated field that indicates
the date and time of the last update. The status indicator can be green (good status), yellow (degraded status), or red
(failed status).

The status is determined by using the value for admin.polling.delay as an interval to measure health:
Green (good status):

The replica administrative node contacted the primary administrative node on the last pull request.
Yellow (degraded status):

The replica administrative node contacted the primary administrative node between 2 and 10 intervals.
Red (failed status):

The replica administrative node has either never contacted the primary administrative node, or it has been more
than 10 intervals since the nodes communicated.

Configure Cluster Prerequisites

Before configuring a PingAccess cluster, there are several prerequisite steps that must be taken.

 | PingAccess Administrator's Guide | 78

1. Install PingAccess on each cluster node (see Install PingAccess)
2. Create a key pair for the PingAccess administrative console that uses the DNS name of the administrative node as

the common name. If an administrative replica console is created, this key pair needs to either be configured with
the administrative replica node defined in the Subject Alternative Names for the key pair, or the key pair needs to
be configured as a wildcard certificate. (See Key Pairs)

Info: Using an IP address as the common name or in the subject alternative names is also acceptable, as
long as those values are used in the administrative node fields on the Settings | Clustering configuration
page.

3. Edit <PA_HOME>/conf/run.properties on the clustered console and change the
pa.operational.mode parameter from STANDALONE to CLUSTERED_CONSOLE.

4. Go to Settings > System > Clustering and change the Primary Administrative Node value from
localhost:9000 to <dns_name>:9000, where <dns_name> is the common name from the key pair
defined in step 2.

5. Restart the administrative node

Define the Primary Administrative Node

Define the PingAccess server you want to use as the administrative node.

1. Enter the host and port for the administrative console. The default is localhost:9000.
2. Click SAVE.

Configure the Replica Administrative Node

When using a replica administrative node, it is necessary to define a key pair to use for the admin HTTPS Listener
that includes both the primary administrative node and the replica administrative node. This can be accomplished
either by using a wildcard certificate or by defining subject alternative names in the key pair that include the replica
administrative node's DNS name. If a replica administrative node is used in your configuration, configure the replica
administrative node before defining the engine nodes, or the bootstrap.properties files generated for the
engine nodes will not include information about the replica administrative node.

In addition to the configuration below, the Replica Administrative node includes a status indicator that indicates the
health of the node and a read-only Last Updated field that indicates the date and time of the last update. The status
indicator can be green (good status), yellow (degraded status), or red (failed status).

The status is determined by using the value for admin.polling.delay as an interval to measure health:
Green (good status):

The replica administrative node contacted the primary administrative node on the last pull request.
Yellow (degraded status):

The replica administrative node contacted the primary administrative node between 2 and 10 intervals.
Red (failed status):

The replica administrative node has either never contacted the primary administrative node, or it has been more
than 10 intervals since the nodes communicated.

Note: If a Replica Administrative Node is being configured in the environment, that must be done prior to
configuring the engines.

1. Go to Settings > System > Clustering and configure the Replica Administrative Node hostname and port. This
name must match either a subject alternative name in the key pair created in the previous section, or be considered
a match for the wildcard specified if the key pair uses a wildcard in the common name.

2. Click the download icon next to the SAVE button to download the bootstrap file for the replica administrative
node.

3. Copy the downloaded file to the replica administrative node's <PA_HOME> directory and unzip it
4. Conditional: If the Replica Administrative Node is running on a Linux host, execute the command chmod 400

conf/pa.jwk

 | PingAccess Administrator's Guide | 79

5. Edit <PA_HOME>/conf/run.properties on the replica administrative node and change the
pa.operational.mode value to CLUSTERED_CONSOLE_REPLICA

6. Start the replica node
7. You can verify replication has completed by monitoring the <PA_HOME>/log/pingaccess.log file and

looking for the message "Configuration successfully synchronized with administrative node"

Configure an Engine

For each engine:

1. Click NEW ENGINE on the right to configure a new engine.
2. Enter a Name for the engine. Special characters and spaces are allowed.
3. Enter a Description of the engine.
4. Click SAVE & DOWNLOAD to generate and download a public and private key pair into the

<enginename>_data.zip file for the engine. This file is prepended with the name you give the engine.
Depending on your browser configuration, you may be prompted to save the file.

5. Copy the zip file to the <PA_HOME> directory of the corresponding engine in the cluster and unzip it. The
engine uses these files to authenticate and communicate with the administrative console.

Info: Generate a new key for an engine at any time by clicking SAVE & DOWNLOAD and unzipping
the <enginename>_data.zip archive on the engine to replace the files with a new set of
configuration files. When that engine starts up and begins using the new files, PingAccess deletes the old
key.

6. Conditional: On Linux systems running the PingAccess engine, change the permissions on the extracted pa.jwk
to mode 400 by executing the command chmod 400 conf/pa.jwk after extracting the zip file.

7. Start each engine.

Info: For information on configuring engine to share information with each other in a cluster, see
Configure PingAccess Servers into a Cluster.

Edit an Engine

1. Navigate to Settings > System > Clustering.
2. Click by the engine you want to edit, then click Edit. The Edit Engine page appears.
3. Make your edits.
4. Click SAVE.

Remove an Engine's Access to the Administrative Console

1. Access the Clustering page by selecting Settings from the menu bar of the PingAccess administrative console.
2. Click for the engine you want to edit and click Edit. The Edit Engine page appears.
3. Click in the Public Keys box to revoke engine access to the administrative console.

Info: Use the SAVE & DOWNLOAD button to create a new key for the engine. See the steps for setting
up a PingAccess engine above.

4. Click SAVE.

Remove an Engine

1. Access the Clustering page by selecting Settings from the menu bar of the PingAccess administrative console.
2. Click for the engine you want to delete and click Delete to permanently remove all references to the engine

from the cluster.
3. Click DELETE in the confirmation window.

 | PingAccess Administrator's Guide | 80

PingFederate

Use this page to configure the connection to the PingFederate Runtime and Administration, and to identify the
Resource Server client for validating OAuth access tokens.

The PingFederate Runtime configuration includes advanced options used to configure an optional backchannel
communication. Without this configuration, all communication between PingAccess and PingFederate takes place
through the host specified in the PingFederate Runtime configuration section.

With a high availability configuration where multiple PingFederate Runtime Engines are in use, it may be desirable
to configure PingAccess to use those Runtime Engines for behind-the-scenes communication rather than the front
channel interface used for user authentication. When this configuration is used, one or more back channel servers can
be configured; a basic availability profile configuration is used, which can be overridden by setting parameters in the
PingAccess run.properties file. The values are defined in the Availability Profile Defaults settings.

Configure PingFederate Runtime

Before configuring a secure connection to the PingFederate Runtime, it is necessary to export the PingFederate
certificate and import it into a trusted certificate group in PingAccess. Perform the following steps:

1. In PingFederate, export the certificate active for the Runtime Server. See SSL Server Certificates in the
PingFederate Administrator's Manual for more information.

2. Import the Certificate into PingAccess.
3. (Optional) Create a Trusted Certificate Group if one does not already exist.
4. Add the Certificate to a Trusted Certificate Group.

Info: For information on setting PingFederate up as an OAuth Authorization Server, see Enabling the OAuth
AS and Authorization Server Settings in the PingFederate documentation.

Once the PingFederate Runtime connection is saved, PingAccess will test the connection to PingFederate. If
the connection cannot be made, a warning will be displayed in the admin interface.

Configure the connection to the PingFederate Runtime
1. Enter the Host name or IP address for the PingFederate Runtime.
2. Enter the Port number for PingFederate Runtime.
3. Enter the Base Path, if needed, for PingFederate Runtime. This field is optional. It must start with a slash - for

example: /federation.
4. Select Audit to log information about the transaction to the audit store. PingAccess audit logs record a selected

subset of transaction log information at runtime and are located in the /logs directory of your PingAccess
installation (see Security Audit Log).

5. Select Secure if PingFederate is expecting HTTPS connections.
6. From the Trusted Certificate Group list, select the certificate group the PingFederate certificate is in. This field

is available only if you select Secure.
7. Conditional: If hostname verification should be disabled for the PingFederate Runtime, open the Advanced

section and enable the Skip Hostname Verification option.
8. Conditional: If hostname verification is required for the PingFederate Runtime, open the Advanced section and

enter the hostname PingAccess should expect in the Expected Certificate Hostname field.

In addition to the above procedure, if your setup involves OpenID Connect flows, SSO, or other configuration
options that require PingAccess and PingFederate to communicate without user involvement, PingAccess can be
configured to use a separate back channel communication for those interactions.

Configure the PingFederate Back Channel servers
9. Open the Advanced subsection of the PingFederate Runtime section of the page.
10. Enter one or more hostname:port pairs in the Back Channel Servers list.

http://documentation.pingidentity.com/pingfederate/pf/?contextId=help_CertManagementTasklet_SslServerCerts_CertManagementState
http://documentation.pingidentity.com/pingfederate/pf/?contextId=concept_enablingTheOauthAs
http://documentation.pingidentity.com/pingfederate/pf/?contextId=concept_enablingTheOauthAs
http://documentation.pingidentity.com/pingfederate/pf/?contextId=help_AuthorizationServerSettingsTasklet_OAuthAuthorizationServerSettingsState

 | PingAccess Administrator's Guide | 81

11. Conditional: If the back channel uses HTTPS, enable the Back Channel Secure option. This option becomes
available when at least one Back Channel Server is defined.

12. Conditional: If the back channel uses an alternate base path, enter the path in the Back Chanel Base Path field.
This option becomes available when at least one Back Channel Server is defined.

13. Conditional: If hostname verification for secure connections is not required for either the Runtime or the Back
Channel Servers, enable the Skip Hostname Verification option.

14. Conditional: If hostname verification is required, enter the hostname PingAccess should expect in the Expected
Certificate Hostname field.

15. Click SAVE.

Info: Once you save this configuration and Configure the OAuth Resource Server on page 82, a
PingFederate Access Validator is available for selection when you define OAuth-type rules in Policy
Manager.

Configure PingFederate Administration

For information on the PingFederate Administration API see PingFederate Administrative API in the PingFederate
documentation.

Once the PingFederate Administration configuration is saved, PingAccess will test the connection to PingFederate.
If the connection cannot be made, an error will be displayed in the admin interface, and the configuration will not be
saved.

1. Enter the Host name or IP address for access to the PingFederate Administrative API.
2. Enter the Port number for access to the PingFederate Administrative API.
3. Optional: (Optional) Enter the Base Path for the PingFederate Administrative API.

The Base Path must start with a slash (/).

For example: /path
4. Enter the Admin Username.

This username only requires Auditor (read only) permissions in PingFederate.
5. Enter the Admin Password.
6. Enable Audit to log information about the transaction to the audit store. PingAccess audit logs record a selected

subset of transaction log information at runtime and are located in the /logs directory of your PingAccess
installation (see Security Audit Log).

7. Enable Secure if the Site is expecting HTTPS connections.
8. From the Trusted Certificate Group list, select the group of certificates to use when authenticating to

PingFederate. PingAccess requires that the certificate in use by PingFederate anchor to a certificate in the
associated Trusted Certificate Group. This field is available only if you enable Secure.

Configure PingFederate for PingAccess SSO

To enable administrator SSO to PingAccess, configure the following settings within the PingFederate AS. Click the

icon () next to each section heading to access additional configuration information. For example, click next
to Roles and Protocols to open a new window and view the Choosing Roles and Protocols page of the PingFederate
documentation.

Note: The information below is an example configuration and does not cover all required steps for each
PingFederate OAuth Settings page discussed, only fields necessary for successful SSO to the PingAccess
administrative console. Fields not mentioned are not necessary for this configuration (see Using OAuth Menu
Selections for configuration details of the PingFederate OAuth Settings pages).

Note: You must complete the configuration for connecting to the PingFederate OAuth AS instance you plan
to use (see PingFederate).

Roles and Protocols

• Enable the OAuth 2.0 AS role and the OpenID Connect protocol.

http://documentation.pingidentity.com/pingfederate/pf/?contextId=concept_pingFederateAdministrativeApi
http://documentation.pingidentity.com/pingfederate/pf/?contextId=concept_usingOauthMenuSelections
http://documentation.pingidentity.com/pingfederate/pf/?contextId=concept_usingOauthMenuSelections
http://documentation.pingidentity.com/pingfederate/pf/?contextId=help_LocalSettingsTasklet_RolesAndProtocolsState

 | PingAccess Administrator's Guide | 82

• Enable the IdP Provider role and a protocol.

Password Credential Validator (PCV)

• Create a PCV for authenticating administrative users.

Adapters

• Create an HTML Form IdP Adapter and specify the PCV you configured.

Authorization Server Settings

• Select Implicit in the Reuse Existing Persistent Access Grants for Grant Types section.

Access Token Management

• Select Internally Managed Reference Tokens as the Access Token Management Type.
• Extend the contract by adding the Username attribute on the Access Token Attribute Contract page.

OpenID Connect Policy Management

Info: We recommend creating an OpenID Connect Policy to use specifically for PingAccess administrative
console authentication.

• Delete all of the attributes that appear in the Extend the Contract section of the Attribute Contract page. The only
required attribute is sub.

• Select Access Token as the Source and Username as the Value on the Contract Fulfillment page.

Client Management

Info: We recommend creating a Client to use specifically for PingAccess administrative console
authentication.

• Select None for Client Authentication.
• Add the location of the PingAccess host as a Redirect URI. For example: https://localhost:9000/*
• Select Implicit as an Allowed Grant Type.
• Select one of the elliptic curve (ECDSA) algorithms as the OpenID Connect ID Token Signing Algorithm and

select the OpenID Connect Policy to use for PingAccess administrative console authentication.

IdP Adapter Mapping

• Map the HTML Form IdP Adapter Username value to the USER_KEY and the USER_NAME contract attributes
for the persistent grant and the user's display name on the authorization page, respectively.

Access Token Mapping

• Map values into the token attribute contract by selecting Persistent Grant as the Source and USER_KEY as the
value for the Username attribute. These are the attributes included or referenced in the access token.

Configure the OAuth Resource Server

Prior to configuring this option, the steps in Configure PingFederate Administration on page 81 must be
performed.

When receiving OAuth-protected API calls, PingAccess acts as an OAuth Resource Server, checking with the
PingFederate OAuth Authorization Server on the validity of the bearer access token it receives from a client. In order
to validate the token, a valid OAuth client must exist within the PingFederate OAuth Authorization Server.

Note: This configuration is optional and needed only if you plan to validate PingFederate OAuth access
tokens.

1. Enter the OAuth Client ID you defined when creating the PingAccess OAuth client in PingFederate.

http://documentation.pingidentity.com/pingfederate/pf/?contextId=help_PasswordCredentialValidatorTasklet_PasswordCredentialValidatorMgmtState
http://documentation.pingidentity.com/pingfederate/pf/?contextId=concept_htmlFormAdapterConfiguration
http://documentation.pingidentity.com/pingfederate/pf/?contextId=help_AuthorizationServerSettingsTasklet_OAuthAuthorizationServerSettingsState
http://documentation.pingidentity.com/pingfederate/pf/?contextId=concept_accessTokenManagement
http://documentation.pingidentity.com/pingfederate/pf/?contextId=help_PoliciesManagementTasklet_PoliciesManagementState
http://documentation.pingidentity.com/pingfederate/pf/?contextId=help_OAuthClientsManagementTasklet_OAuthClientsManagementState
http://documentation.pingidentity.com/pingfederate/pf/?contextId=help_OAuthSource2TargetMappingTasklet_OAuthIdpAdapter2TargetMappingsState
http://documentation.pingidentity.com/pingfederate/pf/?contextId=help_AccessTokenMappingTasklet_OAuthUserKey2AccessTokenMappingState

 | PingAccess Administrator's Guide | 83

Info: When you configure an OAuth client in PingFederate, be sure to select Access Token Validation
as the allowed grant type. For more information, see Configuring a Client in the PingFederate
Administrator's Manual.

2. Enter the Client Secret you defined when creating the PingAccess OAuth client within PingFederate.
3. Select Cache Tokens to retain token details for subsequent requests. This option reduces the communication

between PingAccess and PingFederate.
4. In the Subject Attribute Name field, enter the attribute you want to use from the OAuth access token as the

subject for auditing purposes. For example, username. At runtime, the attribute’s value is used as the Subject
field in audit log entries for API Resources with policies that validate access tokens. The attribute must align with
an attribute in the OAuth access token attribute contract defined within PingFederate.

5. If multiple Access Token Managers are configured in PingFederate, select the Send Audience option to send the
URI the user requested as the aud OAuth parameter to select an Access Token Manager.

Note: Use of this option requires that the Access Token Management instances be configured with
appropriate Resource URIs. Matching of the Resource URI is performed on a most-specific match basis.
For examples of how this works, please see Access Token Management Parameters in the PingFederate
Administrator's Manual.

http://documentation.pingidentity.com/pingfederate/pf/?contextId=help_OAuthClientManagementTasklet_OAuthClientManagementState
http://documentation.pingidentity.com/pingfederate/pf/?contextId=help_OAuthClientManagementTasklet_OAuthClientManagementState
http://documentation.pingidentity.com/pingfederate/pf/?contextId=help_BearerAccessTokenMgmtPluginTasklet_CreateAdapterContractState
http://documentation.pingidentity.com/pingfederate/pf/?contextId=concept_accessTokenManagementParameters

 | PingAccess Deployment Guide | 84

PingAccess Deployment Guide

There are many topics to consider when deciding how PingAccess fits into your existing network, from determining
the deployment architecture required for your use case and whether high-availability options are required. This
section provides information to help you make the right decisions for your environment.

Use Cases and Deployment Architecture
There are many options for deploying PingAccess in your network environment depending on your needs and
infrastructure capabilities. For example, you can design a deployment that supports mobile and API access
management, Web access management, or auditing and proxying. For each of these environments, you can choose a
stand-alone deployment for proof of concept or deploy multiple PingAccess servers in a cluster configuration for high
availability, server redundancy, and failover recovery.

You have a choice between using PingAccess as a Gateway or using a PingAccess Agent plugin on the web server. In
a gateway deployment, all client requests first go through PingAccess and are checked for authorization before they
are forwarded to the target site. In an agent deployment, client requests go directly to the web server serving up the
target site, where they are intercepted by the Agent plugin and checked for authorization before they are forwarded
to the target resource. The same access control checks are performed by the PingAccess Policy Server in both cases
and only properly authorized client request are allowed to reach the target assets. The difference is that in a gateway
deployment client requests are rerouted through PingAccess Gateway, while in an agent deployment they continue to
be routed directly to the target site, where PingAccess Agent is deployed to intercept them.

PingAccess Agent makes a separate access control request to PingAccess Policy Server using the PingAccess Agent
Protocol (PAAP). The agent request contains just the relevant parts of the client request so that PingAccess Policy
Server can make the access control decision and respond with instructions to the agent regarding any modifications to
the original client request that the agent should perform prior to forwarding the request. For example, the agent may
add headers and tokens required by the target resource. Under the PingAccess Policy Server's control, the agent may
perform a certain amount of caching of information in order to minimize the overhead of contacting the PingAccess
Policy Server, thus maximizing response time.

In both gateway and agent deployment the response from the target resource is processed on the way to the original
client. In an agent deployment, the amount of processing is more limited than in a gateway deployment. The agent
does not make another request to the Policy Server, so response processing is based on the initial agent response.
Consequently, the agent is not able to apply the request processing rules available to the gateway.

When designing a deployment architecture, many requirements and components must be identified for a successful
implementation. Proper network configuration of routers/firewalls and DNS ensure that all traffic is routed through
PingAccess for the Resources it is protecting and that alternative paths (for example, backdoors) are not available.

The following sections provide specific use cases and deployment architecture requirements to assist with designing
and implementing your PingAccess environment.

Deploying for Gateway Web Access Management

A PingAccess Web access management (WAM) deployment enables an organization to quickly set up an
environment that provides a secure method of managing access rights to Web-based applications while integrating
with existing identity management infrastructure. With growing numbers of internal and external users, and more
and more enterprise resources available online, it is important to ensure that qualified users can access only those
applications to which they have permission. A WAM environment provides authentication and policy-based access
management while integrating with existing infrastructure.

Deployed at the perimeter of a protected network between browsers and protected Web-based applications,
PingAccess Gateway performs the following actions:

 | PingAccess Deployment Guide | 85

• Receives inbound calls requesting access to Web applications. Web Session protected requests contain a
previously-obtained PA token in a cookie derived from the user's profile during an OpenID Connect based login at
PingFederate.

• Evaluates application and resource-level policies and validates the tokens in conjunction with an OpenID Connect
Policy configured within PingFederate.

• Acquires the appropriate target security token (Site Authenticators) from the PingFederate STS or from a cache
(including attributes and authorized scopes) should a Web application require identity mediation.

• Makes authorized requests to the sites where the Web applications reside and responses are received and
processed.

• Relays the responses on to the browsers.

The following sections describe sample Proof of Concept and Production architectures for a WAM use case
deployment.

• WAM Gateway POC Deployment Architecture
• WAM Gateway Production Deployment Architecture

Deploying for Agent Web Access Management

A PingAccess Web access management (WAM) agent deployment enables an organization to quickly set up an
environment that provides a secure method of managing access rights to Web-based applications while integrating
with existing identity management infrastructure and minimal network configuration changes. With growing numbers
of internal and external users, and more and more enterprise resources available online, it is important to ensure that
qualified users can access only those applications to which they have permission. A WAM environment provides
authentication and policy-based access management while integrating with existing infrastructure.

The PingAccess Agent plugin is installed on the Web server hosting the protected Web-based applications and
configured to communicate with PingAccess Server also deployed on the network. When the agent intercepts a client
request to a protected Web application resource it performs the following actions:

• Intercepts inbound requests to Web applications.
• Sends agent requests to the PingAccess Policy Server sending along relevant request information needed by Policy

Server.
• Receives agent responses from Policy Server and follows the instructions from Policy Server, modifies the request

as specified, and allows the request to proceed to the target resource.
• Intercepts responses from the application and modifies response headers as instructed in the initial agent request to

Policy Server.
• Relays responses on to the browsers.

The PingAccess Policy Server listens for agent requests and performs the following actions:

• Evaluates application and resource-level policies and validates the tokens in conjunction with an OpenID Connect
Policy configured within PingFederate

• Acquires the appropriate HTTP request header configuration from the associated Identity Mappings.
• Sends an agent response with instructions on whether to allow the request and how to modify the client request

headers.

The following sections describe sample Proof of Concept and Production architectures for a WAM use case
deployment.

• WAM Agent POC Deployment Architecture
• WAM Agent Production Deployment Architecture

Deploying for Gateway API Access Management

A PingAccess API access management deployment enables an organization to quickly set up an environment
that provides a secure method of controlling access to APIs while integrating with existing identity management
infrastructure. Pressure from an ever-expanding mobile device and API economy can lead developers to hastily
design and expose APIs outside the network perimeter. Standardized API access management leads to a more

 | PingAccess Deployment Guide | 86

consistent, centrally-controlled model that ensures existing infrastructure and security policies are followed, thereby
safeguarding an organization’s assets.

PingAccess Gateway sits at the perimeter of a protected network between mobile, in-browser, or server-based client
applications and protected APIs and performs the following actions:

• Receives inbound API calls requesting protected applications. OAuth-protected API calls contain previously-
obtained access tokens retrieved from PingFederate acting as an OAuth Authorization Server.

• Evaluates application and resource-level policies and validates access tokens in conjunction with PingFederate.
• Acquires the appropriate target site security token (Site Authenticators) from the PingFederate STS or from a

cache (including attributes and authorized scopes) should an API require identity mediation.
• Makes authorized requests to the APIs and responses are received and processed.
• Relays the responses on to the clients.

The following sections describe sample Proof of Concept and Production architectures for an API access management
use case deployment.

• API Access Management POC Deployment Architecture
• API Access Management Production Deployment Architecture

Deploying for Auditing and Proxying

A PingAccess deployment for auditing and proxying enables an organization to quickly set up an environment that
provides a secure method of controlling access to back-end Sites. With growing numbers of internal and external
users, it is important to know which users are accessing applications, from where and when they are accessing them,
and ensuring that they are correctly accessing only those applications to which they have permission. A standardized
auditing/proxying deployment provides a centrally-controlled model that ensures existing infrastructure and security
policies are followed, thereby safeguarding an organization’s assets.

Sitting at the perimeter of a protected network between mobile, in-browser, or server-based client applications and
back-end Sites, PingAccess performs the following actions:

• Receives inbound calls requesting access to protected back-end Sites.
• Audits the request and then makes authorized requests to the back-end Sites.
• Receives and processes responses and relays them on to the clients.

The following sections describe sample Proof of Concept and Production architectures for an auditing/proxying use
case deployment.

• Audit and Proxy POC Deployment Architecture
• Audit and Proxy Production Deployment Architecture

Configuration by Use Case
Your next configuration steps depend on what type of deployment you are implementing. See the Deployment
Guide for a detailed discussion of deployment considerations and best practices in designing your architecture. The
following sections describe the configuration steps for the most common use cases:

• API Access Management Gateway Deployment
• Web Access Management Agent Deployment
• Web Access Management Gateway Deployment
• Auditing and Proxying Gateway Deployment

Next Steps

Once you complete the above configuration settings, your next steps are similar for all use cases:

• Configure Sites and Agents to define the target applications to be protected. Sites may need Site Authenticators to
define the credentials the site expects for access control.

 | PingAccess Deployment Guide | 87

• Configure Applications and Resources to define the assets you wish to allow clients to access.
• Create Policies for the defined applications and resources to protect them.

Web Access Management Gateway Deployment

The following section describes the important configuration options for a Web Access Management Gateway
deployment. See Deploying for Gateway Web Access Management in the Deployment Guide for specific use case
information.

Step Description

Configure the connection to the PingFederate. PingAccess uses PingFederate to manage web session
and authentication.

Configure the OpenID Connect Relying Party Client for
PingAccess.

The client must be registered with PingFederate and the
client credentials configured in PingAccess to identify
PingAccess when requesting authentication for users
trying to access Web applications.

Configure Web session details to enable protection of
Web Resources.

Configures settings for secure Web sessions such as
timeout values, cookie parameters, and cryptographic
algorithms.

Generate or Import Key Pairs and configure HTTP
Listeners.

Defines the certificates and keys used to secure access
to the PingAccess administrative console and secure
incoming HTTPS requests at runtime.

Set up your cluster for high availability. Facilitates high availability of critical services, and
increases performance and overall system throughput.

Add trusted CA certificates. Defines trust to certificates presented during outbound
secure HTTPS connections.

Create a trusted certificate group. Provides a trusted set of anchor certificates for use when
authenticating outbound secure HTTPS connections.

Define virtual servers for protected Resources. Allows one server to share PingAccess Resources
without requiring all Sites on the server to use the same
host name. If SNI is available (Java 8), specific key pairs
can be assigned to virtual hosts.

Web Access Management Agent Deployment

The following section describes the important configuration options for a Web Access Management Agent
deployment See Deploying for Agent Web Access Management for specific use case information.

First, PingAccess Agent needs to be deployed using the following steps:

1. Install PA Agent on Web Server - following instruction in PingAccess Agent for Apache Installation or
PingAccess Agent for IIS Installation depending on your specific Web server.

2. Define the Agents and download agent bootstrap.properties file via the download field in the Shared Secrets field.
3. Deploy the agent bootstrap.properties file to agents following instructions in PingAccess Agent Configuration .

The rest of PingAccess deployment is similar to Web Access Management Gateway Deployment.

Step Description

Configure the connection to the PingFederate. PingAccess uses PingFederate to manage web session
and authentication.

Configure the OpenID Connect Relying Party Client for
PingAccess.

The client must be registered with PingFederate and the
client credentials configured in PingAccess to identify

https://documentation.pingidentity.com/pingaccess/paaa11/#Installation.html
https://documentation.pingidentity.com/pingaccess/paai11/#Installation.html
https://documentation.pingidentity.com/pingaccess/paaa11/#Configuration.html

 | PingAccess Deployment Guide | 88

Step Description
PingAccess when requesting authentication for users
trying to access Web applications.

Configure Web session details to enable protection of
Web Resources.

Configures settings for secure Web sessions such as
timeout values, cookie parameters, and cryptographic
algorithms.

Generate or Import Key Pairs and configure HTTP
Listeners.

Defines the certificates and keys used to secure access
to the PingAccess administrative console and secure
incoming HTTPS requests at runtime.

Set up your cluster for high availability. Facilitates high availability of critical services, and
increases performance and overall system throughput.

Add trusted CA certificates. Defines trust to certificates presented during outbound
secure HTTPS connections.

Create a trusted certificate group. Provides a trusted set of anchor certificates for use when
authenticating outbound secure HTTPS connections.

Define virtual servers for protected Resources. Allows one server to share PingAccess Resources
without requiring all Sites on the server to use the same
host name. If SNI is available (Java 8), specific key pairs
can be assigned to virtual hosts.

API Access Management Gateway Deployment

The following section describes the important configuration options for deploying an API Gateway. See Deploying
for Gateway API Access Management in the Deployment Guide for specific use case information.

Step Description

Configure the connection to the PingFederate OAuth
Authorization Server.

PingAccess uses this connection and credentials to
validate incoming Access Tokens for securing API calls.

Configure the Resource Server OAuth Client. The client must be registered with PingFederate and
the client credentials configured in PingAccess to
authenticate PingAccess when validating incoming
Access Tokens.

Generate or Import Key Pairs and configure HTTP
Listeners.

Defines the certificates and keys used to secure access
to the PingAccess administrative console and secure
incoming HTTPS requests at runtime.

Set up your cluster for high availability. Facilitates high availability of critical services, and
increases performance and overall system throughput.

Add trusted CA certificates. Defines trust to certificates presented during outbound
secure HTTPS connections.

Create a trusted certificate group. Provides a trusted set of anchor certificates for use when
authenticating outbound secure HTTPS connections.

Define virtual servers for protected applications. Allows one server to share PingAccess Resources
without requiring all Sites on the server to use the same
host name. If SNI is available (Java 8), specific key pairs
can be assigned to virtual hosts

 | PingAccess Deployment Guide | 89

Auditing and Proxying Gateway Deployment

The following section describes the important configuration options for an auditing or proxying deployment (see
Deploying for Auditing and Proxying for specific use case information).

Step Description

Generate or Import Key Pairs and configure HTTP
Listeners.

Defines the certificates and keys used to secure access
to the PingAccess administrative console and secure
incoming HTTPS requests at runtime.

Set up your cluster for high availability. Facilitates high availability of critical services, and
increases performance and overall system throughput.

Add trusted CA certificates. Defines trust to certificates presented during outbound
secure HTTPS connections.

Create a trusted certificate group. Provides a trusted set of anchor certificates for use when
authenticating outbound secure HTTPS connections.

Define virtual servers for protected Resources. Allows one server to share PingAccess Resources
without requiring all Sites on the server to use the same
host name.

Web Access Management
With growing numbers of internal and external users, and more and more enterprise resources available online, it is
important to ensure that qualified users can access only those resources to which they have permission. PingAccess
uses Web Access Management (WAM) capabilities to allow organizations to manage access rights to Web-based
resources. WAM is a form of identity management that controls access to Web resources, providing authentication
and policy-based access management. Once a user is authenticated, PingAccess applies application and resource-level
policies to the request. Once policy evaluation is passed, any required identity mediation between the back-end site
and the authenticated user is performed. The user is then granted access to the requested resource.

PingAccess provides two deployment architectures for Web Access Management - gateway and agent. In a gateway
deployment client requests are routed to PingAccess which then forwards authorized requests to the target application.
In an agent deployment, client requests are intercepted at the web server hosting the application via the PingAccess
agent plugin. The agent then communicates with PingAccess Policy Server to validate access before allowing the
request to proceed to the target application resource.

Choosing Between an Agent or Gateway Deployment

PingAccess can be deployed using Agents, as a Gateway (or reverse proxy), or using a combination of both. Before
deciding on a deployment, it is important to understand the pros and cons of each deployment scenario and determine
how they impact your strategy.

Gateway

Pros:

• Fewer number of deployed components that require maintenance
• Independent of target application platform
• No impact on web/app server processing and performance
• Able to work with existing security token types (such as creating 3rd party WAM tokens)

Cons:

• Requires networking changes
• Requires strategy for securing direct access to backend web/app servers (network routing or service level

authentication)

 | PingAccess Deployment Guide | 90

• Depending on the application, may require content / request/response rewriting
• Another layer that requires HA/DR planning

Agents

Pros:

• No networking or server level authentication changes required
• Tight integration with web server handling requests
• Scales with application

Cons:

• High cost of ownership when many agent instances deployed, although should be upgradable/patchable
independently of PingAccess (policy) server

• Policy evaluation is cached; although it is periodically flushed/re-evaluated (for new sessions, updates to session
token, etc.) it isn't quite is "real time" as proxy

• Tight dependency on web server version & platform

Web Access Management Gateway Proof Of Concept Deployment Architecture

This environment is used to emulate the Production environment for testing purposes. In the test environment,
PingAccess can be set up with the minimum hardware requirements. This environment example does not provide high
availability and is not recommended for a Production environment.

The following table describes the three zones within this proposed architecture.

 | PingAccess Deployment Guide | 91

Zone Description

External Zone External network where incoming requests for Web
applications originate.

DMZ Zone Externally exposing segment where PingAccess is
accessible to Web browsers. PingAccess is a standalone
instance in this environment, serving as both a runtime
and an administrative port.

Protected Zone Back-end controlled zone in which Sites hosting the
protected Web applications are located. All requests
to these Web applications must be designed to pass
through PingAccess. PingFederate is accessible to
Web browsers in this zone and is a standalone instance
in this environment, serving as both a runtime and
an administrative port. PingFederate requires access
to identity management infrastructure in order to
authenticate users (depicted by the icon in the diagram).

Web Access Management Gateway Production Deployment Architecture

There are many considerations when deploying a Production environment. For high availability and redundancy,
the environment requires clustering and load-balancing. Load balancers are required as part of the networking
infrastructure to achieve high availability by ensuring that requests are sent to available servers they are front-ending.
Best practices in network design and security also include firewalls to ensure that only required ports and protocols
are permitted across zones.

Info: PingAccess can provide high availability and basic load balancing for the protected web apps in
the protected zone. See the Availability Profiles and Load Balancing Strategies documentation for more
information.

 | PingAccess Deployment Guide | 92

The following table describes the three zones within this proposed architecture.

Zone Description

External Zone External network where incoming requests for Web
applications originate.

DMZ Zone Externally exposing segment where PingAccess is
accessible to Web browsers. A minimum of two
PingAccess engine nodes will be deployed in the
DMZ to achieve high availability. Depending on your
scalability requirements, more nodes may be required.

Protected Zone Back-end controlled zone in which Sites hosting the
protected Web applications are located. All requests
to these Web applications must be designed to pass
through PingAccess. PingFederate is accessible to Web
browsers in this zone and requires access to identity
management infrastructure in order to authenticate
users (depicted by the icon in the diagram). A minimum
of two PingFederate engine nodes will be deployed
in the protected zone. Administrative nodes for both
PingAccess and PingFederate may be co-located on a
single machine to reduce hardware requirements.

 | PingAccess Deployment Guide | 93

Web Access Management Agent Proof Of Concept Deployment Architecture

This environment is used to emulate the Production environment for testing purposes. In the test environment,
PingAccess can be set up with the minimum hardware requirements. This environment example does not provide high
availability and is not recommended for a Production environment.

The following table describes the three zones within this proposed architecture.

Zone Description

External Zone External network where incoming requests for Web
applications originate.

DMZ Zone Externally exposed segment where application Web
server is accessible to Web clients. PingAccess Agent
is deployed as a plugin on this Web server. The agent
interacts with PingAccess Policy Server in the Protected
Zone. PingFederate is deployed as a standalone instance
in this environment because during user authentication
clients interact with PingFederate. PingFederate requires
access to Identity Management Infrastructure in order to
authenticate users.

Protected Zone Back-end controlled zone with no direct access by
Web clients. PingAccess Policy Server is deployed in
this zone. PingAccess interacts with PingFederate in
the DMZ Zone. Identity Management Infrastructure is
deployed in this zone.

 | PingAccess Deployment Guide | 94

Web Access Management Agent Production Deployment Architecture

There are many considerations when deploying a Production environment. For high availability and redundancy,
the environment requires clustering and load-balancing. Load balancers are required as part of the networking
infrastructure to achieve high availability by ensuring that requests are sent to available servers they are front-ending.
Best practices in network design and security also include firewalls to ensure that only required ports and protocols
are permitted across zones.

The following table describes the three zones within this proposed architecture.

Zone Description

External Zone External network where incoming requests for Web
applications originate.

DMZ Zone Externally exposed segment where (possibly multiple)
application Web servers are accessible to Web clients.
PingAccess Agent is deployed as a plugin on these Web
servers. Agents interact with PingAccess Policy Server in
the Protected Zone.

Protected Zone Back-end controlled zone with no direct access by
Web clients. PingAccess Policy Server is deployed in
a cluster in this zone with a separate administrative
engine. PingFederate is also deployed in this zone in
a cluster with its own separate administrative engine.
PingFederate needs access to the Identity Management
Infrastructure in order to authenticate users. Since
during user authentication Web clients need to interact
with PingFederate directly, a reverse proxy such as

 | PingAccess Deployment Guide | 95

Zone Description
PingAccess Gateway is required to forward client
requests through the DMZ. This aspect is not shown in
the diagram.

API Access Management Proof of Concept Deployment Architecture
This environment is used to emulate a production environment for development and testing purposes. In the test
environment, PingAccess can be set up with the minimum hardware requirements. Given these conditions, we do not
recommend using this proposed architecture in a production deployment as it does not provide high availability.

The following table describes the three zones within this proposed architecture.

Zone Description

External Zone External network where incoming API requests
originate.

DMZ Zone Externally exposing segment where PingAccess is
accessible to API clients. PingAccess is a standalone
instance in this environment, serving as both a runtime
and an administrative port.

Protected Zone Back-end controlled zone in which Sites hosting
the protected APIs are located. All requests to these
APIs must be designed to pass through PingAccess.
PingFederate is accessible to API clients in this zone and

 | PingAccess Deployment Guide | 96

Zone Description
is a standalone instance, serving as both a runtime and an
administrative port.

API Access Management Production Deployment Architecture
There are many considerations when deploying a Production environment. For high availability and redundancy,
the environment requires clustering and load-balancing. Load balancers are required as part of the networking
infrastructure to achieve high availability by ensuring that requests are sent to available servers they are front-ending.
Best practices in network design and security also include firewalls to ensure that only required ports and protocols
are permitted across zones.

Info: PingAccess can provide high availability and basic load balancing for the protected web apps in the
protected zone. See the Load Balancing Strategies documentation for more information.

The following environment example is a recommended production quality deployment architecture for an API access
management use case.

The following table describes the three zones within this proposed architecture.

External Zone External network where incoming API requests
originate.

DMZ Zone Externally exposing segment where PingAccess is
accessible to API clients. A minimum of two PingAccess
engine nodes will be deployed in the DMZ to achieve

 | PingAccess Deployment Guide | 97

high availability. Depending on your scalability
requirements, more nodes may be required.

Protected Zone Back-end controlled zone in which Sites hosting
the protected APIs are located. All requests to these
APIs must be designed to pass through PingAccess.
PingFederate is accessible to API clients in this zone.
A minimum of two PingFederate engine nodes will be
deployed in the protected zone. Administrative nodes for
both PingAccess and PingFederate may be co-located on
a single machine to reduce hardware requirements

Auditing and Proxying Proof of Concept Deployment Architecture
This environment is used to emulate a production environment for development and testing purposes. In the test
environment, PingAccess can be set up with the minimum hardware requirements. Given these conditions, we do not
recommend using this proposed architecture in a production deployment as it does not provide high availability.

The following table describes the three zones within this proposed architecture.

Zone Description

External Zone External network where incoming requests originate.

DMZ Zone Externally exposing segment where PingAccess is
accessible to clients. PingFederate and PingAccess are
standalone instances in this environment, serving as both
runtime and administrative ports.

 | PingAccess Deployment Guide | 98

Zone Description

Protected Zone Contains back-end Sites audited and proxied through
PingAccess. Audit results are sent to an audit repository
or digested by reporting tools. Many types of audit
repository/tools are supported such as SIEM/GRC,
Splunk, database, and flat files.

Auditing and Proxying Production Deployment Architecture
There are many considerations when deploying a Production environment. For high availability and redundancy,
the environment requires clustering and load-balancing. Load balancers are required as part of the networking
infrastructure to achieve high availability by ensuring that requests are sent to available servers they are front-ending.
Best practices in network design and security also include firewalls to ensure that only required ports and protocols
are permitted across zones.

Info: PingAccess can provide high availability and basic load balancing for the protected web apps in the
protected zone. See the Load Balancing Strategies documentation for more information.

The following environment example is a recommended production quality deployment architecture for an auditing/
proxying use case.

The following table describes the three zones within this proposed architecture.

External Zone External network where incoming requests originate.

DMZ Zone Externally exposing segment where PingAccess is
accessible to clients. A minimum of two PingAccess

 | PingAccess Deployment Guide | 99

engine nodes will be deployed in the DMZ. Depending
on your scalability requirements, more nodes may be
required.

Protected Zone Contains back-end Sites audited and proxied through
PingAccess. Audit results are sent to an audit repository
or digested by reporting tools. Many types of audit
repository tools are supported such as SIEM/GRC,
Splunk, database, and flat files.

 | Customization and Development | 100

Customization and Development

Customize User-Facing Pages
PingAccess supplies templates to provide information to the end user. These template pages use the Velocity template
engine, an open-source Apache project, and are located in the <PA_HOME>/conf/template directory.

You can modify most of these pages in a text editor to suit the particular branding and informational needs of your
PingAccess installation. (Cascading style sheets and images for these pages are included in the <PA_HOME>/
conf/static/pa/assets subdirectory.) Each page contains both Velocity constructs and standard HTML. The
Velocity engine interprets the commands embedded in the template page before the HTML is rendered in the user’s
browser. At runtime, the PingAccess server supplies values for the Velocity variables used in the template.

For information about Velocity, refer to the Velocity project documentation on the Apache Web site. Changing
Velocity or JavaScript code is not recommended. The following variables are the only variables that can be used for
rendering the associated Web-browser page.

Variable Description

title The browser tab title for the message. For example, Not
Found.

header The header for the message. For example, Not Found.

info The information for the message. For example, No
Resource configured for request.

exchangeId A value that identifies the request/response pair. This can
be used to locate messages in the PingAccess logs.

trackingId A value that identifies either the tracking ID (identified
with a tid: prefix) or an Access Token ID (identified
with a atid: prefix). This can be used to identify the
session in the PingAccess and PingFederate logs.

At runtime, the user's browser is directed to the appropriate page, depending on the operation being performed and
where the related condition occurs (see the table below). For example, if Rule evaluation fails, the user's browser is
directed to the Policy error-handling page. The following table describes each template.

Template File Name Purpose Type Action

admin.error.page.template.htmlIndicates an error occurred
while the admin console
was processing a request

Error Consult <PA_HOME>/
log/pingaccess.log
to determine the underlying
cause of the issue.

general.error.page.template.htmlIndicates that an unknown
error has occurred and
provides an error message.

Error Consult <PA_HOME>/
log/pingaccess.log
to determine the underlying
cause of the issue.

general.loggedout.page.template.htmlDisplayed when a user logs
out of PingAccess.

Normal User should close the
browser.

oauth.error.json Indicates that Rule
evaluation has failed and
provides an optional error
message. To customize this

Normal If necessary, consult the
audit logs in <PA_HOME>/
log for details about

http://velocity.apache.org/engine/releases/velocity-1.4

 | Customization and Development | 101

Template File Name Purpose Type Action
information, see Error-
Handling Fields for OAuth
Rules.

why the policy denied the
request.

policy.error.page.template.htmlIndicates that Rule
evaluation has failed and
provides an optional error
message. To customize this
information, see Error-
Handling Fields for Rules.

Normal If necessary, consult the
audit logs in <PA_HOME>/
log for details about
why the policy denied the
request.

Note: The templates stored in <PA_HOME>/conf/template/system are system templates, and should
not be modified.

PingAccess Endpoints
The following endpoints provide a means by which external applications can communicate with the PingAccess
server and provide complete administrative capabilities of the product.

Heartbeat Endpoint
A maintenance endpoint is provided for administrators to verify that the server is running.

OpenID Connect Endpoints
Endpoints needed for PingFederate to interface with PingAccess using the OpenID Connect (OIDC) protocol are
also included.

Administrative API Endpoints
The Administrative API endpoints are used by the PingAccess administrative console. These are REST APIs that
can be called from custom applications or using command line tools such as curl.

Heartbeat Endpoint

You can use an HTTPS call at any time to verify that the PingAccess server is running. This call can be made to any
active PingAccess listener and on any node in a PingAccess cluster. For example, with default port configurations, a
CLUSTERED_CONSOLE_REPLICA will respond to this endpoint on port 9000, and a CLUSTERED_ENGINE will
respond to it on port 3000.

/pa/heartbeat.ping

This endpoint is configured using the enable.detailed.heartbeat.response parameter in run.properties. If this option is
set to false, then an HTTP 200 status and the text OK is returned.

If the enable.detailed.heartbeat.response parameter is set to true (the default setting), then a configurable status with
more detail is returned. PingAccess must be restarted if this value is changed.

If an error is returned, then the PingAccess instance associated with the endpoint is down. Load balancers can use this
endpoint to determine the status of PingAccess, independent of any other system status checks.

Info: Begin the URL with the server name and the PingAccess runtime port number. For example:
https://hostname:3000/pa/heartbeat.ping.

The detailed response output format is an Apache Velocity template defined in <PA_HOME>/conf/template/
heartbeat.page.json. The following values are available:

 | Customization and Development | 102

Value Description

$monitor.getTotalJvmMemory('bytes'|'KB'|'MB'|'GB') Returns the total memory in the JVM. Specify 'bytes',
'KB', "MB', or 'GB' to specify the units. 'bytes' is the
default if not specified.

$monitor.getUsedJvmMemory('bytes'|'KB'|'MB'|'GB') Returns the used memory in the JVM. Specify 'bytes',
'KB', "MB', or 'GB' to specify the units. 'bytes' is the
default if not specified.

$monitor.getFreeJvmMemory('bytes'|'KB'|'MB'|'GB') Returns the free memory in the JVM. Specify 'bytes',
'KB', "MB', or 'GB' to specify the units. 'bytes' is the
default if not specified.

$monitor.getTotalPhysicalSystemMemory('bytes'|'KB'|'MB'|'GB')Returns the total system memory. Specify 'bytes', 'KB',
"MB', or 'GB' to specify the units. 'bytes' is the default if
not specified.

$monitor.getTotalUsedPhysicalSystemMemory('bytes'|'KB'|'MB'|'GB')Returns the used system memory. Specify 'bytes', 'KB',
"MB', or 'GB' to specify the units. 'bytes' is the default if
not specified.

$monitor.getTotalFreePhysicalSystemMemory('bytes'|'KB'|'MB'|'GB')Returns the free system memory. Specify 'bytes', 'KB',
"MB', or 'GB' to specify the units. 'bytes' is the default if
not specified.

$monitor.getHostname() Returns the hostname for the system running
PingAccess.

$monitor.getNumberOfCpus() Returns the number of CPU cores in the system.

$monitor.getCpuLoad('###.##') Returns the current CPU utilization. The parameter
contains an optional format value. If the format is
specified, the value returned is returned as a percentage
value from 0%-100%, formatted using the Java
DecimalFormat specification. If no format value is
specified, then the value returned is a real number from 0
to 1 which represents the CPU utilization percentage. For
example, a format value of "###.##" will return a value
similar to "56.12", but no specified format would result
in the value being returned as "0.5612".

$monitor.getOpenClientConnections() Returns the current number of clients connected to
PingAccess.

$monitor.getNumberOfVirtualHosts() Returns the current number of configured virtual hosts in
PingAccess.

$monitor.getNumberOfApplications() Returns the current number of configured applications in
PingAccess.

$monitor.getNumberOfSites() Returns the current number of configured sites in the
PingAccess configuration database. In a clustered
environment, on the engine nodes, this number will
reflect the number of sites associated with applications
rather than the number of configured sites that show on
the admin node. For more information, see the note in
the Server Clustering section. This value is not included
in the default template, but can be added by the system
administrator if desired.

$monitor.getLastRefreshTime('yyyy/MM/dd HH:mm:ss') Returns the time the PingAccess configuration was last
refreshed. The parameter specifies the date format to use;

http://docs.oracle.com/javase/7/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/7/docs/api/java/text/DecimalFormat.html

 | Customization and Development | 103

Value Description
if no value is specified, the ISO 8601 date format is used.
If the parameter is specified, the format used comes from
the Joda DateTimeFormat specification.

The template can be modified in any way to suit your needs.

The default content type is application/json, however this can be overridden by modifying the
$monitor.setContentType() line in the template to specify the desired content-type header.

OpenID Connect Endpoints

This page describes the endpoints needed for PingFederate to interface with PingAccess using the OpenID Connect
(OIDC) protocol. These endpoints are available on the engine.http.port and agent.http.port ports
defined in <PA_HOME>/conf/run.properties.

/pa/oidc/logout

Clears the cookie containing the PA Token. This endpoint enables end users to trigger the removal of their own PA
Cookie from the browser they are using. The Logged Out page is a template that can be modified (see Customize
User-Facing Pages).

Info: This endpoint simply clears the PA Token from the browser cookie. It does not retain any server-side
state to denote log off. Additionally, this endpoint clears the cookie only from the requested host/domain and
may still exist in requests bound for other hosts/domains.

Note: If logout is being performed across multiple domains, use the PingFederate /idp/startSLO.ping
endpoint instead. See IdP Endpoints in the PingFederate Administrator's Manual for more information about
this endpoint.

/pa/oidc/cb

The OIDC callback endpoint that receives the ID Token from PingFederate.

/pa/oidc/JWKS

The JSON Web Key endpoint used by the PingFederate JWT Token Processor for signature verification. This
endpoint must is used in conjunction with the configuration of a JWT token processor instance in PingFederate. For
more information, see Configuring a JSON Web Token (JWT) Processor Instance in the PingFederate Administrator's
Manual.

/pa/oidc/logout.png

Used by PingFederate to initiate a logout from PingAccess in conjunction with the single logout functionality. This
endpoint terminates the PA tokens across domains.

Administrative API Endpoints

PingAccess ships with interactive documentation for both developers and non-developers to explore the PingAccess
API endpoints, view a reference of the metadata for each API, and experiment with API calls. PingAccess APIs
are REST APIs that provide complete administrative capabilities of the product. They can be called from custom
applications or from command line tools such as cURL. This endpoint is only available on the admin.port defined
in <PA_HOME>/conf/run.properties.

Note: For enhanced API security, you must include X-XSRF-Header: PingAccess in all requests and
use the application/json content type for PUT/POST requests.

http://www.joda.org/joda-time/apidocs/org/joda/time/format/DateTimeFormat.html
http://documentation.pingidentity.com/pingfederate/pf/?contextId=idp_endpoints
http://documentation.pingidentity.com/pingfederate/pf/?contextId=concept_configuringJsonWebTokenJwtProcessorInstance

 | Customization and Development | 104

Groovy

Groovy

PingAccess provides the Groovy Script and OAuth Groovy Script Rule types that enable the use of Groovy, a dynamic
programming language for the Java Virtual Machine (see the Groovy documentation). Groovy scripts provide
advanced rule logic that extends PingAccess rule development beyond the capabilities of the packaged rules. Groovy
scripts have access to important PingAccess runtime objects such as the Exchange and PolicyContext objects, which
the scripts can interrogate and modify. Groovy Script Rules are invoked during the request processing phase of
an exchange, allowing the script to modify the request before it is sent to the server. Groovy Script Rules are also
invoked during the response, allowing the script to modify the response before it is returned to the client. The diagram
below highlights the flow of Rule processing.

• During request processing, Rules associated with the application are evaluated.
• The request passes through each of the Rules sequentially until it is sent to the site.
• When the response from the site returns to PingAccess, the Groovy Rules are evaluated.

Groovy Scripts

Groovy scripts provide advanced Rule logic that extends PingAccess Rule development beyond the capabilities of
the packaged rules. Groovy scripts have access to important PingAccess runtime objects such as the Exchange and
PolicyContext objects, which the scripts can interrogate and modify. Groovy Script Rules are invoked during the
request processing phase of an exchange, allowing the script to modify the request before it is sent to the server.

http://groovy.codehaus.org/Documentation

 | Customization and Development | 105

Groovy Script Rules are also invoked during the response, allowing the script to modify the response before it is
returned to the client. See Groovy for more info about Groovy.

Note: Through Groovy scripts, PingAccess administrators can perform sensitive operations that could affect
system behavior and security.

Matchers

Groovy scripts must end execution with a Matcher instance. Matchers provide a framework for establishing
declarative Rule matching objects. You can use a Matcher from the list of PingAccess matchers or from the Hamcrest
library.

The following are Hamcrest method examples for constructing access control policies with the Web Session Attribute
Rule using evaluations such as an OR group membership evaluation.

allOf - Matches if the examined object matches ALL of the specified matchers. In this example, the user needs to be
in both the sales and managers groups for this rule to pass.

allOf(containsWebSessionAttribute("group","sales"),
 containsWebSessionAttribute("group","managers"))

anyOf - Matches any of the specified matchers. In this example, the rule passes if the user is in any of the specified
groups.

anyOf(containsWebSessionAttribute("group","sales"),
 containsWebSessionAttribute("group","managers"),
 containsWebSessionAttribute("group","execs"))

not - Inverts the logic of a matcher to not match. In this example, the rule fails if the user is in both the sales and the
managers groups.

not(allOf(containsWebSessionAttribute("group", "sales"),
 containsWebSessionAttribute("group", "managers")))

See Matchers for more information.

Objects

The following objects are available in Groovy. Click a link for more information on that object.

Exchange Object
Contains the HTTP request and the HTTP response for the transaction processed by PingAccess.

PolicyContext Object
Contains a map of objects needed to perform policy decisions. The contents of the map vary based on the context
of the current user flow.

Request Object
Contains all information related to the HTTP request made to a Application.

Response Object
Contains all information related to the site HTTP response.

Method Object
Contains the HTTP method name from the request made to a Application.

Header Object
Contains the HTTP header information from the request made to a Application or the HTTP header from a Site
response.

Body Object
Contains the HTTP body from the Application request or the HTTP body from the Site response.

http://hamcrest.org/JavaHamcrest/javadoc/1.3/org/hamcrest/CoreMatchers.html
http://hamcrest.org/JavaHamcrest/javadoc/1.3/org/hamcrest/CoreMatchers.html

 | Customization and Development | 106

OAuthToken Object
Contains the OAuth access token and related identity attributes.

Debugging/Troubleshooting
Groovy Script Rules are evaluated when saved to ensure that they are syntactically valid. If a Groovy Script Rule fails
to save, check the log for output with the exception javax.script.ScriptException. For example, if you
are trying to save a Groovy Script Rule that references the missing method foo(), the following output would be
logged:

DEBUG com.pingidentity.synapse.adminui.AdminAPIInterceptor:1585 -
 javax.script.ScriptException:
javax.script.ScriptException: groovy.lang.MissingMethodException: No
 signature of method:
org.codehaus.groovy.jsr223.GroovyScriptEngineImpl.foo() is applicable for
 argument types: () values: []
Possible solutions: find(), any(), get(java.lang.String),
 use([Ljava.lang.Object;), is(java.lang.Object), find(groovy.lang.Closure)
DEBUG com.pingidentity.synapse.adminui.AdminAPIInterceptor:1399 - Returning
 error to UI: [[Error occurred validating policy.], {}]

Info: These error messages are only logged if the DEBUG level output is enabled for the
com.pingidentity logger.

Body Object

Purpose

Accesses the Body object in Groovy exc?.request?.body or exc?.response?.body

The Body object contains the HTTP body from the application request or the HTTP body from the site response. The
request HTTP body is sent on to the site after the rules are evaluated. The response HTTP body is sent on to the User-
Agent after the response rules are evaluated.

Groovy Sample

//Checks the actual length of the body content and set the Content-Length
 response header
def body = exc?.response?.body;
def header = exc?.response?.header;
header?.setContentLength(body.getLength());
anything("Content-Length header set");

Method Summary

Method Description

byte[] getContent() Returns the body content of the request or response.

int getLength() Returns the length of the body content.

Exchange Object

Purpose

Accesses the Exchange object in Groovy - exc

 | Customization and Development | 107

The Exchange object is available to both the OAuth Groovy Script Rule and the regular Groovy Script Rule.
PingAccess makes the Exchange object available to Groovy Script developers to provide request and response
information for custom Groovy Rules.

The Exchange object contains both the HTTP request and the HTTP response for the transaction processed by
PingAccess. You can use this object to manipulate the request prior to it being sent to the site. You can also use this
object to manipulate the response from the site before it is sent to the client.

An instance of the Exchange object lasts for the lifetime of a single Application request. The Exchange object can be
used to store additional information determined by the developer.

Some fields and methods for the Response Object are not available in scripts used with an Agent. See the Field
Summary and Method Summary tables below for more information.

Groovy Sample

//Evaluate if the content length of the request is empty
if (exc?.request?.header?.contentLength > -1)

{
 //Set a custom header in the request object
 exc?.request?.header?.add("X-PINGACCESS-SAMPLE", "SUCCESS")
 anything("Custom header added to request")
}
else
{
 println("Request content is empty") //Debugging statement
 not(anything("Request has no content"))
}

Field Summary

Field Description

Request request Obtains the PingAccess representation of the request.
This request is sent to the site with any changes that
might be made in a Groovy script.

Response response Obtains the PingAccess representation of the response.
If the site has not been called, the response is null. This
field is not available in scripts used with an Agent.

long timeReqSent Obtains the time, in milliseconds, when the request was
sent to the site. This field is not available in scripts used
with an Agent.

long timeResReceived Obtains the time, in milliseconds, when the response
was received from the site. This field is not available in
scripts used with an Agent.

Method Summary

Method Description

String getRequestURI() Returns the PingAccess URI that received the request.

MediaType getRequestContentType() Convenience method that returns the request
Content-Type. This method works the same as
exc?.request?.contentType.

 | Customization and Development | 108

Method Description

int getRequestContentLength() Convenience method that returns the request
Content-Length. This method works the same as
exc?.request?.contentLength.

MediaType getResponseContentType() Convenience method that returns the response
Content-Type. This method works the same as
exc?.response?.contentType. This method is not
available in scripts used with an Agent.

int getResponseContentLength() Convenience method that returns the response
Content-Length. This method works the same as
exc?.response?.contentLength. This Method is not
available in scripts used with an Agent.

Object getProperty(String key) Returns the value of a custom property.

void setProperty(String key, Object value) Sets a custom property.

Header Object

Purpose

Accesses the Header object in Groovy exc?.request?.header or exc?.response?.header

The Header object contains the HTTP Header information from the request made to an application or the HTTP
Header from a site response. The Request HTTP Header is sent on to the site after the Rules are evaluated. The
Response HTTP Header is returned to the client after the response Rules are evaluated.

Use the Header object to add custom HTTP headers for site.

Groovy Sample

//Set a custom header for the Service request
def header = exc?.request?.header;
header?.add("X-PINGACCESS-SAMPLE", "SUCCESS");
anything("Custom header set into request");

Method Summary

Method Description

void add(String key, String val) Adds HTTP header fields for the request.

Info: Note that if Groovy Rules are used to
inject HTTP headers for the backend protected
application, the script must sanitize the same
headers from the original client request.

String getAccept() Returns the acceptable response Content-Types expected
by the User-Agent.

void setAccept(String value) Sets the acceptable response Content-Types expected by
the User-Agent.

String getAuthorization() Returns the authentication credentials for HTTP
Authentication.

void setAuthorization(String user, String password) Sets authentication credentials for HTTP Authentication.

String getConnection() Returns the connection type preferred by the User-Agent.

 | Customization and Development | 109

Method Description

void setConnection(String connection) Sets the connection type preferred by the User-Agent.

int getContentLength() Returns the request body content length.

void setContentLength(int length) Sets the request body content length.

boolean hasContentLength() Returns true of the Content-Length header is set.

void setContentType(String value) Sets the request body MIME type.

Map getCookies() Returns all cookies sent with the request.

void setCookie(String value) Sets a cookie.

String getFirstCookieValue() Returns the first cookie in the Cookie header.

String getFirstValue(String value) Returns the first value of the HTTP header specified by
the value.

void setDate(Date date) Sets the date of the message in the Date HTTP header.

String getHost() Returns the hostname specified in the request.

void setHost(String value) Sets the hostname for the request to the Site.

String getLocation() Gets the redirect location URL for the response.

void setLocation(String value) Sets the redirect location URL for the response.

String getProxyAuthorization() Returns the proxy credentials.

void setProxyAuthorization(String value) Sets the request proxy credentials.

void setServer(String value) Sets the server name for the response.

String getXForwardedFor() Returns the originating IP address of the client and the
proxies, if set.

void setXForwardedFor(String value) Sets the IP Address for the client and the proxies.

boolean removeContentEncoding() Removes the Content-Encoding header value. Returns
true if the value has been removed.

boolean removeContentLength() Removes the Content-Length header value. Returns true
if the value has been removed.

boolean removeContentType() Removes the Content-Type header value. Returns true if
the value has been removed.

boolean removeExpect() Removes the Expect header value. Returns true if the
value has been removed.

boolean removeFields(String name) Removes the header value specified by the name
parameter. Returns true if the value has been removed.

boolean removeTransferEncoding() Removes the Transfer-Encoding header value. Returns
true if the value has been removed.

Method Object

Purpose

Accesses the Method object in Groovy exc?.request?.method

The Method object contains the HTTP Method name from the request made to an application. The HTTP Method is
sent on to the Site after the Rules are evaluated.

 | Customization and Development | 110

Groovy Sample

//Retrieve the HTTP Method name and make different decisions based on the
 method name
def method = exc?.request?.method?.methodName
switch (method) {
 case "GET":
 println("GET")
 break;
 case "POST":
 println("POST")
 break;
 case "PUT":
 println("PUT")
 break;
 case "DELETE":
 println("DELETE")
 break;
default:
 println("DEFAULT")
 pass()
}

Field Summary

Field Description

String methodName Returns the name of the HTTP Method (GET, PUT,
POST, DELETE, HEAD).

OAuth Token Object

Purpose

Accesses the OAuth Token object in Groovy
exc?.user?.policyContext?.context?.get("oauth_token")

The OAuthToken object contains the OAuth access token and related identity attributes. The OAuthToken instance is
available only for OAuth Groovy Script Rules.

Groovy Sample

def scopes = exc?.user?.policyContext?.context?.get("oauth_token")?.scopes
def attr = exc?.user?.policyContext?.context?.get("oauth_token")?.attributes
def username =
 exc?.user?.policyContext?.context?.get("oauth_token")?.attributes?.get("username")?.get(0)
exc?.request?.header?.add("x-scopes", "$scopes")
exc?.request?.header?.add("x-attributes", "$attr")
exc?.request?.header?.add("x-username", "$username")
anything()

Field Summary

Field Description

Date expiresAt Contains the expiration date of the OAuth access token.

Date retrievedAt Contains the date that the OAuth access token was
retrieved from PingFederate.

 | Customization and Development | 111

Field Description

String tokenType Contains the type of OAuth access token. (Bearer, JWT).

String clientId Contains the client ID associated with the OAuth access
token.

Set scopes Contains the set of scopes associated with the OAuth
access token.

Map<String, List> attributes Contains a map of identity attributes specific to the user.

PolicyContext Object

Purpose

Accesses the Policy Context object in Groovy policyCtx

The PolicyContext object is a map of objects needed to perform policy decisions. The contents of the map vary based
on the context of the current user flow. A common example is OAuth token information stored in an OAuthToken
object contained within the context map. In this example, an OAuthToken object is retrieved from the policy context
by using the oauth_token key. The OAuthToken object is available only for the OAuth Groovy Script Rule.

Groovy Sample

def oauthToken = policyCtx?.context.get("oauth_token")

Field Summary

Field Description

java.util.Map context Container for the OAuthToken object.

Request Object

Purpose

Accesses the Request object in Groovy exc?.request

The Request object contains all information related to the HTTP request made to an application. The request instance
is sent on to the site after the Rules are evaluated.

Some fields and methods for the Response Object are not available in scripts used with an Agent. See the Field
Summary and Method Summary tables below for more information.

Groovy Sample

//Retrieve the request object from the exchange object
def request = exc?.request?.isJSON()

//Check to make sure the request body contains JSON
if (!request) {
not(anything("The request requires a JSON body"))
} else {
 anything("The request contains JSON")
}

 | Customization and Development | 112

Field Summary

Field Description

String uri Returns the PingAccess URI that received the request.

Method method Contains the HTTP method information from the request
sent to the application.

Header header Contains the HTTP header information from the request
sent to the application.

Warning: Warning: Previously executed
custom Rules can modify these values.

Body body Contains the HTTP body information from the request
sent to the application. This field is not available in
scripts used with an Agent.

Warning: Warning: Previously executed
custom Rules can modify these values.

Method Summary

Method Description

boolean isXML() Returns true if the Content-Type header is set to xml.

boolean isJSON() Returns true if the Content-Type header is set to
application/json.

boolean isHTML() Returns true if the Content-Type header is set to text/
html.

boolean isBodyEmpty() Returns true if the Content-Length header is set to zero
or the HTTP body has zero length.

Response Object

Purpose

Accesses the Response object in Groovy exc?.response

The Response object contains all information related to the Service HTTP response. The response instance is sent on
to the User-Agent after the Rules are evaluated.

The fields and methods for the Response Object are not available in scripts used with an Agent.

Groovy Sample

// Intercept a server error (status code = 500) return a failure
def response = exc?.response

if (response?.isServerError()) {
 not(anything("A server error occurred"))
}

 | Customization and Development | 113

Field Summary

Field Description

int statusCode Contains the HTTP response status code.

String statusMessage Contains the HTTP response status message.

Header header Contains the HTTP header information from the request
sent to the application.

Warning: Previously executed custom Rules
can modify these values.

Body body Contains the HTTP body information from the request
sent to the application.

Warning: Previously executed custom Rules
can modify these values.

Method Summary

Method Description

boolean isRedirect() Returns true if the status code is in the 300’s.

boolean isUserError() Returns true if the status code is in the 400’s.

boolean isServerError() Returns true if the status code is in the 500’s.

boolean isBodyEmpty() Returns true if the Content-Length header is set to zero
or the HTTP body has zero length.

Groovy Script Examples

OAuth Policy Context Example

In some instances, it may be necessary to transmit identity information to Sites to provide details of the user
attempting to access a Site. In such instances, Groovy scripts can be used to inject identity information into various
portions of the HTTP request to the target. In this example, the Site is expecting the identity of the user to be
conveyed via the User HTTP header. This can be accomplished using the OAuth Groovy Script Rule and the
following Groovy script:

user=policyCtx?.context.get("oauth_token")?.attributes?.get("user")?.get(0)
exc?.request?.header?.add("User", "$user")
anything()

More complex Groovy script logic:

test = exc?.request?.header?.getFirstValue("test");
if(test != null && test.equals("foo"))
{
 //rule will fail evaluation if Test header has value 'foo'
 not(anything("Test header is foo"))
}
else
{
 //rule will pass evaluation is Test header has value of anything else
 //or isn't present
 anything("Test header is something else")
}

 | Customization and Development | 114

Matchers

The Groovy Script Rule and the OAuth Groovy Script Rule must end execution with a Matcher instance. This could
either be a Matcher from the list of PingAccess matchers or from the Hamcrest library (for more information on
Hamcrest, see the Hamcrest Tutorial).

Example 1 - Simple Groovy Rule Inserts a Custom HTTP Header

test = "let's get Groovy!"
exc?.response?.header?.add("X-Groovy", "$test")
anything()

In the sample rule above, the script ends with a call to the Matcher anything(). The anything() Matcher
signals that the rule has passed.

Example 2 - OAuth Groovy Rule Checks the HTTP Method and Confirms the OAuth Scope

//Get the HTTP method name
def methodName = exc?.request?.method?.methodName()
if (methodName == "POST") {
 hasScope("WRITE")
} else {
 not(anything())
}

In the sample rule above, a Matcher is evaluated at the end of each line of execution. The first Matcher used is the
hasScope() Matcher that confirms if the OAuth Access token has the WRITE scope. If this is true, the rule passes.

The not(anything()) Matcher combination is evaluated when the methodName does not equal POST. This
Matcher combination evaluates to false.

PingAccess Matchers

The following table lists the Matchers available for the Groovy Script Rule and the OAuth Groovy Script Rule.

Matcher Description

inIpRange(String cidr) Validates the source IP address of the request against the
cidrString parameter in CIDR notation. When Source
IP headers defined in the HTTP Requests page are found,
the source IP address determined from those headers is
used as the source address.

For agents, this value is also potentially controlled by the
override options on the Agent settings.

Example: inIpRange("127.0.0.1/8")

inIpRange(java.net.InetAddress
ipAddress, int prefixSize)

Validates the source IP address against the
ipAddress and the prefixSize parameters specified
individually. When Source IP headers defined in the
HTTP Requests page are found, the source IP address
determined from those headers is used as the source
address.

For agents, this value is also potentially controlled by the
override options on the Agent settings.

Example:
inIpRange(InetAddress.getByName("127.0.0.1"),8)is
equivalent to inIpRange("127.0.0.1/8")

http://hamcrest.org/JavaHamcrest/javadoc/1.3/org/hamcrest/CoreMatchers.html
http://code.google.com/p/hamcrest/wiki/Tutorial

 | Customization and Development | 115

Matcher Description

inIpRange(String cidr, String
listValueLocation, boolean
fallBackToLastHopIp, String...
headerNames)

Validates the source IP address in the first of the
specified headerNames using the cidr value. This
behaves similar to the HTTP Requests on page 69
configuration option, but can be specified as part of a
Groovy Script as a means of overriding the configuration
stored in PingAccess for a specific Groovy Script rule.

Valid values for the listValueLocation parameter
are FIRST, LAST, and ANY. This parameter controls
where, in a multivalued list of source IP addresses, the
last source should be taken from. If ANY is used, if any
of the source IP addresses in a matching header match
the CIDR value, the matcher evaluates to true.

Example: inIpRange("127.0.0.1/8",
"LAST", true, "X-Forwarded-For",
"Custom-Source-IP")

inIpRange(java.net.InetAddress
address, int prefixSize, String
listValueLocation, boolean
fallBackToLastHopIp, String...
headerName)

Validates the source IP address in the first of the
specified headerNames using the address and
prefixSize values. In all other respects, this matcher
behaves the same as the version that uses a cidr value
for comparison.

Example:
inIpRange(InetAddress.getByName("127.0.0.1"),
8, "LAST", true, "X-Forwarded-For",
"Custom-Source-IP")

requestXPathMatches(String
xPathString, String xPathValue)

Validates that the value returned by the xPathString
parameter is equal to the xPathValue parameter.

Example: requestXPathMatches("//
header[@name='Host']/
text()","localhost:3000")

inTimeRange(String startTime, String
endTime)

Validates that the current server time is between the
startTime and endTime parameters.

Example: inTimeRange("9:00 am","5:00
pm")

inTimeRange24(String startTime, String
endTime)

Validates that the current server time is between the
specified 24-hour formatted time range between the
startTime and endTime parameters.

Example: inTimeRange24("09:00","17:00")

requestHeaderContains(String field,
String value)

Validates that the HTTP header field value is equal to the
value parameter.

Example: requestHeaderContains("User-
Agent", "Mozilla/5.0 (Macintosh;
Intel Mac OS X 10_8_3)
AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/27.0.1453.93 Safari/537.36")

 | Customization and Development | 116

Matcher Description

requestHeaderContains(Map<String,
String> fieldValuesMap, boolean
caseSensitive)

Validates that at all of the HTTP header fields maps
to the associated value. The first fieldValuesMap
string contains the HTTP header name, and the second
string contains the value to compare the incoming
request header value with.

The caseSensitive parameter determines whether a
case-sensitive comparison is performed on the value.

The second string in the fieldValuesMap supports
Java Regular Expressions.

If multiple pairs of strings are present in the
fieldValuesMap parameter, then all conditions must
be met in order for the matcher to pass.

Example: requestHeaderContains(['User-
Agent':'Mozilla/5.0',
'Cookie':'JSESSIONID'], false)

requestPostFormContains(Map<String,
String> fieldValuesMap, boolean
caseSensitive)

Validates that all of the HTTP form fields maps to the
associated value. The first fieldValuesMap string
contains the form header name, and the second string
contains the value to compare the incoming request
header value with.

The caseSensitive parameter determines whether a
case-sensitive comparison is performed on the value.

Note: This matcher determines whether to
use fields passed in the URL or forms with a
content-type header of application/
x-www-form-urlencoded.

The second string in the fieldValuesMap supports
Java Regular Expressions.

If multiple pairs of strings are present in the
fieldValuesMap parameter, then all conditions must
be met in order for the matcher to pass.

Example:
requestPostFormContains(['email':'@example.com',
'phonenumber':'720'], false)

requestHeaderDoesntContain(String
field, String value)

Validates that the HTTP header field value is not equal to
the value parameter.

Example:
requestHeaderDoesntContain("User-
Agent", "InternetExplorer")

requestBodyContains(String value) Validates that the HTTP body contains the value
parameter.

Example:
requestBodyContains("production")

requestBodyDoesntContain(String value) Validates that the HTTP body does not contain the value
parameter.

 | Customization and Development | 117

Matcher Description
Example:
requestBodyDoesntContain("test")

containsWebSessionAttribute(String
attributeName, String attributeValue)

Validates that the PA Token contains the attribute name
and value.

Example:
containsWebSessionAttribute("sub",
"sarah")

The following table lists the matchers available to only the OAuth Groovy Rule.

Matcher Description

hasScope(String scope) Validates that the OAuth access token contains the scope
parameter.

Example: hasScope("access")

hasScopes(String... scopes) Validates that the OAuth access token contains the list of
scopes.

Example: hasScopes("access","portfolio")

hasAttribute(String attributeName,
String attributeValue)

Checks for an attribute value within the current OAuth2
policy context.

Example: hasAttribute("account","joe")

PingAccess Addon SDK for Java

Preface

This document provides technical guidance for using the PingAccess Add-on SDK. Developers can use this guide, in
conjunction with the installed Javadocs, to extend the functionality of the PingAccess server.

Intended Audience

This guide is intended for application developers and system administrators responsible for extending PingAccess.
The reader should be familiar with Java software-development principles and practices. It describes the development
of:

• SiteAuthenticators
• Rules

Additional Documentation

• The PingAccess Javadocs provide detailed reference information for developers. The Javadocs can be accessed
with a web browser by viewing the file <PA_HOME>/sdk/apidocs/index.html.

Introduction

The PingAccess Add-on SDK provides the following extension points:

RuleInterceptor
An interface for developing custom Rule implementations to control authorization logic in policies.

 | Customization and Development | 118

SiteAuthenticatorInterceptor
An interface for developing custom Site Authenticators to control how PingAccess (operating as a proxy) is able
to integrate with web servers or services it is protecting.

These extension points allow users to customize certain behaviors of PingAccess to suit an organization’s needs. This
SDK provides the means to develop, compile, and deploy custom extensions to PingAccess.

If you need assistance using the SDK, visit the Ping Identity Support Center (ping.force.com/Support) to see how we
can help you with your application. You may also engage the Ping Identity Global Client Services team for assistance
with developing customizations.

Getting Started With the SDK

This section describes the directories and build components that comprise the SDK and provides instructions for
setting up a development environment.

SDK Directory Structure

The PingAccess SDK directory (<PA_HOME>/sdk) contains the following:

• README.md – Contains an overview of the SDK contents.
• /samples/README.md – Contains an overview of the steps necessary to build and use the samples.
• /samples/Rules – Contains a maven project with example plug-in implementations for Rules showing a wide

range of functionality. You may use these examples for developing your own implementations.
• /samples/Rules/README.md – Contains the details of the Rules samples.
• /samples/SiteAuthenticator – Contains a maven project with example plug-in implementations for Site

Authenticators. You may use these examples for developing your own implementations.
• /samples/SiteAuthenticator/README.md – Contains the details of the Site Authenticator samples.
• /apidocs/ – Contains the SDK Javadocs. Open index.html to get started.

SDK Prerequisites

Before you start, ensure you have the Java SDK and Apache Maven installed. The samples use Apache Maven and
assume that the PingAccess SDK can be referenced as a dependency. They reference Ping Identity’s public maven
repository, located at:

http://maven.pingidentity.com/release

If Internet access is unavailable, update the pingaccess-sdk dependency in your pom.xml to point to the local
installation.

<dependency>
 <groupId>com.pingidentity.pingaccess</groupId>
 <artifactId>pingaccess-sdk</artifactId>
 <version>3.2.6.0</version>
 <scope>system</scope>
 <systemPath><PA_HOME>/lib/pingaccess-sdk-3.2.6.0.jar</systemPath>
</dependency>

<dependency>
 <groupId>javax.validation</groupId>
 <artifactId>validation-api</artifactId>
 <version>1.0.0.GA</version>
 <scope>system</scope>
 <systemPath><PA_HOME>/lib/validation-api-1.0.0.GA.jar</systemPath>
</dependency>

<dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-api</artifactId>

https://ping.force.com/Support
http://maven.apache.org/download.html

 | Customization and Development | 119

 <version>1.7.4</version>
 <scope>system</scope>
 <systemPath><PA_HOME>/lib/slf4j-api-1.7.4.jar</systemPath>
</dependency>

<dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-log4j12</artifactId>
 <version>1.7.4</version>
 <scope>system</scope>
 <systemPath><PA_HOME>/lib/slf4j-log4j12-1.7.4.jar</systemPath>
</dependency>

Replace <PA_HOME> with the path to the PingAccess installation.

How to Install the SDK Samples

• Before you begin, ensure you have the Java SDK and Apache Maven installed.
• Each sample type is installed separately:

• For the Rules samples, navigate to <PA_HOME>/sdk/samples/Rules
• For the Site Authenticators samples, navigate to <PA_HOME>/sdk/samples/SiteAuthenticator

• From the sample's directory, run the command: $ mvn install

• This builds the samples, runs their tests, and copies the resulting jar file from the target directory to the
<PA_HOME>/lib directory.

jsmith-MBP-2:Rules jsmith$ mvn install
[INFO] Scanning for projects...
[INFO]
[INFO] Using the builder
 org.apache.maven.lifecycle.internal.builder.singlethreaded.SingleThreadedBuilder
 with a thread count of 1
[INFO]
[INFO]
 --
[INFO] Building PingAccess :: Sample Rules 3.2.6
[INFO]
 --
Downloading: http://...
[INFO]
[INFO] --- maven-resources-plugin:2.6:resources (default-resources) @
 sample-rules ---
[INFO] Using 'ISO-8859-1' encoding to copy filtered resources.
[INFO] Copying 1 resource
[INFO]
[INFO] --- maven-compiler-plugin:2.5.1:compile (default-compile) @ sample-
rules ---
[INFO] Compiling 7 source files to /Users/jsmith/Downloads/pingaccess-3.2.6/
sdk/samples/Rules/target/classes
[INFO]
[INFO] --- maven-resources-plugin:2.6:testResources (default-testResources)
 @ sample-rules ---
[INFO] Using 'ISO-8859-1' encoding to copy filtered resources.
[INFO] Copying 4 resources
[INFO]
[INFO] --- maven-compiler-plugin:2.5.1:testCompile (default-testCompile) @
 sample-rules ---
[INFO] Compiling 4 source files to /Users/jsmith/Downloads/pingaccess-3.2.6/
sdk/samples/Rules/target/test-classes
[INFO]
[INFO] --- maven-surefire-plugin:2.12.4:test (default-test) @ sample-rules

 | Customization and Development | 120

[INFO] Surefire report directory: /Users/jsmith/Downloads/pingaccess-3.2.6/
sdk/samples/Rules/target/surefire-reports

 T E S T S

Running com.pingidentity.pa.sample.TestAllUITypesAnnotationRule
Tests run: 2, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.912 sec
Running com.pingidentity.pa.sample.TestIllustrateManyUITypesRule
Tests run: 2, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.029 sec
Running com.pingidentity.pa.sample.TestValidateRulesAreAvailable
Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.002 sec

Results :

Tests run: 5, Failures: 0, Errors: 0, Skipped: 0

[INFO]
[INFO] --- maven-jar-plugin:2.4:jar (default-jar) @ sample-rules ---
[INFO] Building jar: /Users/jsmith/Downloads/pingaccess-3.2.6/sdk/samples/
Rules/target/sample-rules-3.2.6.jar
[INFO]
[INFO] --- maven-install-plugin:2.4:install (default-install) @ sample-rules

[INFO] Installing /Users/jsmith/Downloads/pingaccess-3.2.6/sdk/samples/
Rules/target/sample-rules-3.2.6.jar to /Users/jsmith/.m2/repository/com/
pingidentity/pingaccess/sample-rules/3.2.6/sample-rules-3.2.6.jar
[INFO] Installing /Users/jsmith/Downloads/pingaccess-3.2.6/sdk/samples/
Rules/pom.xml to /Users/jsmith/.m2/repository/com/pingidentity/pingaccess/
sample-rules/3.2.6/sample-rules-3.2.6.pom
[INFO]
[INFO] --- maven-antrun-plugin:1.7:run (default) @ sample-rules ---
[INFO] Executing tasks

main:
 [copy] Copying 1 file to /Users/jsmith/Downloads/pingaccess-3.2.6/lib
[INFO] Executed tasks
[INFO]
 --
[INFO] BUILD SUCCESS
[INFO]
 --
[INFO] Total time: 6.418 s
[INFO] Finished at: 2014-07-08T16:38:30-07:00
[INFO] Final Memory: 16M/38M
[INFO]
 --

Creating your own Plugins

This section describes using the samples as a template for creating your own plugins.

Creating a Rule

• For details on how to create a Rule, reference the javadoc at: <PA_HOME>/sdk/apidocs/com/
pingidentity/pa/sdk/policy/RuleInterceptor.html

• Add a Java class to /sdk/samples/Rules/src that implements
com.pingidentity.pa.sdk.policy.RuleInterceptor and is
annotated by com.pingidentity.pa.sdk.policy.Rule. A base class
com.pingidentity.pa.sdk.policy.RuleInterceptorBase is available to simplify implementing a
Rule.

 | Customization and Development | 121

• Add the class name of the new class to /sdk/samples/Rules/src/main/resources/META-INF/
services/com.pingidentity.pa.sdk.policy.RuleInterceptor. Execute maven install
on the Rules sample pom.

Creating a Site Authenticator

• For details on how to create a Site Authenticator, reference the javadoc at: <PA_HOME>/sdk/apidocs/com/
pingidentity/pa/sdk/siteauthenticator/SiteAuthenticator.html

• Add a Java class to /sdk/samples/SiteAuthenticator/src that extends
com.pingidentity.pa.sdk.siteauthenticator.SiteAuthenticatorInterceptorand is
annotated by com.pingidentity.pa.sdk.siteauthenticator.SiteAuthenticator. A base
class
com.pingidentity.pa.sdk.siteauthenticator.SiteAuthenticatorInterceptorBase is
available to simplify implementing a SiteAuthenticator.

• Add the class name of the new class to /sdk/samples/Rules/src/main/resources/META-INF/
services/com.pingidentity.pa.sdk.siteauthenticator.SiteAuthenticator. Execute
maven install on the SiteAuthenticator sample pom.

Implementation Guidelines

The following sections provide specific programming guidance for developing custom interfaces. Note that the
information is not exhaustive – consult the Javadocs to find more details about interfaces discussed here as well as
additional functionality.

Logging

Use the SLF4j API for logging activities in your module. Documentation on using SLF4j is available on the SLF4j
website.

Lifecycle

The plugins and the implementation of a PluginConfiguration can be instantiated for a number of reasons and at many
times. For example, with a RuleInterceptor here is what happens before the RuleInterceptor is available to process
user requests:

• The Rule annotation on the implementation class of the RuleInterceptor is interrogated to determine which
PluginConfiguration instance will be instantiated.

• The following is performed on RuleInterceptor and PluginConfiguration. Which of these is handled first is not
defined.

• The bean will be provided to Spring for Autowiring.
• The bean will be provided to Spring for post construction initialization. (See PostConstruct)

• PluginConfiguration.setName(String) is called.
• PA attempts to map the incoming JSON configuration to the PluginConfiguration instance.
• ConfigurablePlugin.configure(PluginConfiguration) is called.
• Validator.validate(Object, Class[]) method is invoked and provided to the RuleInterceptor.
• The instance is then made available to service end user requests, such as

RequestInterceptor.handleRequest(com.pingidentity.pa.sdk.http.Exchange) and
ResponseInterceptor.handleResponse(com.pingidentity.pa.sdk.http.Exchange)

Injection

Before they are put into use, Rules, SiteAuthenticators, and their defined PluginConfigurations are passed through
Spring's Autowiring and initialization. To future-proof any code against changes in PingAccess, we recommend that
Spring not be used as a dependency. Use the annotation javax.inject.Inject for any injection.

Classes Available for Injection

Currently, injection is available for the following classes:

http://www.slf4j.org/manual.html
http://www.slf4j.org/manual.html

 | Customization and Development | 122

• com.pingidentity.pa.sdk.util.TemplateRenderer

Differences Between Rules for Agents and Sites

Rules may be applied to applications associated with Agents or Sites. Some features of the SDK are not
available to rules that are applied to agents. Rules that use features only available to sites should be marked
as only applying to sites. This is done by setting the destination element of the rule annotation to the value
{RuleInterceptorSupportedDestination.Site}

Rules that apply only to agents are limited in the following ways:

• The handleResponse method is not called.
• The request body is not present.
• The Exchange.getDestinations list is empty and modifying the destination list has no effect.

As with rules that use features only available to sites, rules that only apply to agents should be marked
as only applying to agents. To do this, set the destination element of the rule annotation to the value
{RuleInterceptorSupportedDestination.Agent}.

PingAccess Agent SDK for Java

Preface

This document provides technical guidance for using the PingAccess Agent SDK for Java. Developers can use this
guide along with the Javadocs for the Java Agent API and sample source code to implement the PingAccess Agent
Protocol in custom agents.

Intended Audience

This guide is intended for application developers and system administrators responsible for implementing a Java
PingAccess Agent. The reader should be familiar with Java software-development principles and practices. It
describes the use of the SDK within a sample Java Servlet Filter.

Additional Documentation

The Java Agent API Javadocs provide detailed reference information for developers. After unzipping the
pingaccess-agent-java-sdk-1.0.0.zip package, the Javadocs can be accessed with a web browser by
viewing the file <AGENT_SDK_JAVA_HOME>/apidocs/index.html.

Introduction

The PingAccess Agent SDK for Java provides an API and sample code to enable developers to build agents for Java-
based application and web servers. Agents provide access management features to their containing server by relying
on central PingAccess servers over the PingAccess Agent Protocol. The PingAccess Agent Protocol Specification is
available from the Ping Identity support portal.

https://ping.force.com/Support/PingIdentityArticle?id=kA340000000Gsx0CAC

 | Customization and Development | 123

The process used when a PingAccess Agent is added to the policy decision process is as follows:

1. The client accesses a resource. If the user is already authenticated, this process continues with step 5.
2. The agent asks PingAccess for instructions. PingAccess checks the URL policy and determines that it is a

protected resource. PingAccess then redirects the client to PingFederate to establish a session.
3. The user logs in, and PingFederate creates the session.
4. The client is then redirected back to the resource.
5. The agent asks PingAccess for instructions. PingAccess checks the URL policy and determines that it is a

protected resource. PingAccess then checks the session token and determines that it is valid.
6. If session revocation is enabled, PingAccess checks and updates the central session revocation list. If the session is

valid, the agent is instructed to set identity HTTP headers.

The PingAccess Agent SDK for Java consists of the following components:

Java Agent API (Java Agent)
pingaccess-agent-java-api-1.0.0.2.jar : The Java Agent API is a set of classes that implement
the PingAccess Agent Protocol.

PingAccess Agent SDK for Java
agent-java-sdk-1.0.0.zip : The PingAccess Agent SDK for Java package.

Servlet Filter Sample
<AGENT_SDK_FOR_JAVA_HOME>/sample : The Servlet Filter Sample demonstrates how the Java Agent
API integrates into a Java Servlet container. The provided source code, logging configuration and deployment
descriptor provide a functional example for how to integrate the Java Agent API into an existing web application.
The sample can be modified in place and recompiled using Maven to test customizations to the Servlet Filter
Sample code for your environment.

Note: This sample code demonstrates how to implement a servlet filter and has been qualified on
Apache Tomcat 7. The filter itself is production quality and can be used either as-is or as a starting point
for further development. Application configuration within the sample demonstrates how to associate
the filter with a servlet (namely, in web.xml). Further hardening of this file or the application server
configuration may be required.

If you need assistance using the PingAccess Agent SDK for Java, visit the Ping Identity Support Center
(ping.force.com/Support) to see how we can help you with your application. You may also engage the Ping Identity
Global Client Services team for assistance with developing customizations.

Getting Started with the PingAccess Agent SDK for Java

Agent SDK Directory Structure

The PingAccess Agent SDK for Java directory (pingaccess-agent-java-sdk-1.0.0) contains the following:

https://ping.force.com/Support

 | Customization and Development | 124

/apidocs

The Javadocs for the Java Agent API. Open index.html in this directory to access the Javadocs content.
/dist

The directory containing pingaccess-agent-java-api-1.0.0.2.jar
/sample

A directory containing src and target directories for building a Java Servlet Filter. This filter uses the Java
Agent API, an agent.properties configuration exported from PingAccess, and the init-params from
the web application web.xml file to enforce resource policy decisions configured in PingAccess.

Agent SDK Prerequisites

Before you start, ensure you have the Java SDK, Apache Maven (maven.apache.org) and an application server (e.g.
Apache Tomcat) installed. The sample uses Apache Maven and assumes that the Java Agent API can be referenced as
a dependency. It references Ping Identity’s public Maven repository, located at:

http://maven.pingidentity.com/release

If Internet access is unavailable, there are two other ways to reference the Java Agent API. First, once Apache Maven
is installed, install the Java Agent API into your local dependency repository by executing the following command:

mvn install:install-file -Dfile=<AGENT_SDK_JAVA_HOME>/dist/pingaccess-agent-
java-api-1.0.0.2.jar -DgroupId=com.pingidentity -DartifactId=pingaccess-
agent-java-api -Dversion=1.0.0.2 -Dpackaging=jar

Alternatively, update the dependency in your pom.xml to point to the local installation:

<dependency>
 <groupId>com.pingidentity</groupId>
 <artifactId>pingaccess-agent-java-api</artifactId>
 <version>1.0.0.2</version>
 <scope>system</scope>
 <systemPath><AGENT_SDK_JAVA_HOME>/dist/pingaccess-agent-java-
api-1.0.0.2.jar</systemPath>
</dependency>

With either of these options, replace <AGENT_SDK_JAVA_HOME> with the absolute path to the unzipped
pingaccess-agent-java-sdk-1.0.0.2 directory.

How to Install the servlet filter sample

Ensure you have the PingAccess Agent SDK for Java, Apache Maven, and Apache Tomcat. These instructions
assume that you are using Apache Tomcat.

• The servlet filter sample is installed under <AGENT_SDK_JAVA_HOME>/sample.
• A deployed version of the servlet filter is under <AGENT_SDK_JAVA_HOME>/sample/target/agent-

sample.

For the initial setup of the web application, we assume you already have Tomcat or another application server set up
on the same machine hosting PingAccess. Out of the box, PingAccess generates self-signed server certificates for
listeners servicing runtime ports with the hostname localhost. By default, the servlet filter sample configures
the Java Agent (Java Agent API) to use "strict" certificate checking for communications with PingAccess. The Java
Agent will not be able to communicate with PingAccess over HTTPS if it is not also on localhost because of
strict hostname checking. If PingAccess already has a server certificate configured with a valid hostname other than
localhost, then you can deploy the Java Agent into a container on another system.

If you cannot setup the application server on the same system as an existing PingAccess service, and that PingAccess
deployment still uses the default localhost server certificate for the Agent port, there is another option. You can
change the default strict certificate checking in agent-sample/WEB-INF/web.xml to test. Please see the
comments in agent-sample/WEB-INF/web.xml for more detail.

https://maven.apache.org

 | Customization and Development | 125

The agent-sample (servlet filter sample) web application is meant to demonstrate the features of the Java Agent within
the context of a functional, standalone sample application. The servlet filter sample uses the Java Agent to intercept
requests bound for sample servlet and will accept or reject them based on the configured PingAccess policy. The
sample servlet only prints out headers, cookies, and other parameters it receives in the request.

1. In the Tomcat webapps directory, create a directory called ROOT.
2. Copy the WEB-INF, META-INF, and assets contents from /sample/target/agent-sample/ into

webapps/ROOT.
This sample servlet filter must run as / to properly carry out the OpenID Connect workflow.

3. In the Tomcat bin directory, create a script called setenv.sh (Linux) or setenv.bat (Windows) with the
following contents:

• For Linux:

export CATALINA_OPTS="-Dlog4j.configurationFile=<PATH_TO_TOMCAT_ROOT>/
webapps/ROOT/WEB-INF/logs/log4j2.xml -
Dserver.log.file=<PATH_TO_TOMCAT_ROOT>/webapps/ROOT/WEB-INF/logs/
server.log"

• For Windows:

set CATALINA_OPTS=="-Dlog4j.configurationFile=<PATH_TO_TOMCAT_ROOT>/
webapps/ROOT/WEB-INF/logs/log4j2.xml -
Dserver.log.file=<PATH_TO_TOMCAT_ROOT>/webapps/ROOT/WEB-INF/logs/
server.log"

The Agent servlet filter logging is configured in webapps/ROOT/WEB-INF/logs/log4j2.xml, and
outputs to webapps/ROOT/WEB-INF/logs/server.log

4. Conditional: If running Tomcat on Linux, execute the command chmod a+x setenv.sh to make this script
executable.

5. Configure a PingAccess Agent.
6. Configure an Application and associate the new Agent with it.
7. When configuring an Agent through the PingAccess administration console, it automatically exports the agent

properties file. Copy the downloaded properties file to webapps/ROOT/WEB-INF/agent-config/
agent.properties.

8. Start Tomcat
9. Start a browser and navigate to http://<HOST>:<PORT>/sample

The values for <HOST> and <PORT> here need to match the Tomcat configuration in use.

Note: If your Tomcat server is not set up to use HTTPS, ensure that any related Web Sessions do not
have the Secure option enabled.

PingAccess Agent SDK for Java Release History
Version 1.0 - June 2015

Initial Release

 | Reference Information | 126

Reference Information

This section includes reference information for various configuration files and property settings used by PingAccess.

The default PingAccess administrative console and some runtime behavior is controlled in part by configuration
properties located in <PA_HOME>/conf/run.properties. The majority of runtime configuration data (such as
Applications, Rules, and Sites) is stored in the data store.

Note: You must restart PingAccess for the changes to run.properties to take effect.

Tip: When storing passwords in run.properties, we strongly recommend you obfuscate them using the
obfuscate.bat or obfuscate.sh utility to mask the password value. This utility is located in the
<PA_HOME>/bin folder.

Admin Properties

Property Description

admin.port Defines the TCP port on which the PingAccess
administrative console runs. Default is 9000.

admin.bindAddress Defines the IP address that admin.port will bind to.
This is typically required on multihomed servers having
multiple IP addresses. The default value of 0.0.0.0
means that the port will bind to all of the server's IP
addresses.

admin.ssl.ciphers Defines the type of cryptographic ciphers available for
use with administrative HTTPS ports.

admin.auth Overrides the administrator authentication method.
For example, if SSO Authentication is enabled and is
somehow misconfigured, this property can be used to
bypass the database configuration and force the use of
Basic Authentication. Commented out by default with
value native.

Admin and Engine Cluster Settings

Property Description

pa.operational.mode Controls the operational mode of the PingAccess server
in a cluster. Valid values are:

• STANDALONE - Use this value for a standalone
(unclustered) PingAccess instance that runs both the
administrative console and the engine. This is the
default.

• CLUSTERED_CONSOLE - Use this value for the
server instance you want to use as the administrative
console server.

Info: Only one engine in a cluster can run
the administrative console.

 | Reference Information | 127

Property Description
• CLUSTERED_CONSOLE_REPLICA - Use this

value for the server instance you want to use as the
backup administrative console server.

• CLUSTERED_ENGINE - Use this value to indicate
a server engine.

Define the following Engine and Admin properties depending on what operational mode an engine is using.

• Define all of the following Engine and Admin properties when pa.operational.mode is set to
STANDALONE.

• Define only the Admin properties when using CLUSTERED_CONSOLE or CLUSTERED_CONSOLE_REPLICA
mode.

• Define only the Engine properties when using CLUSTERED_ENGINE mode.

Administrative Console Settings
These properties control the behavior of the Administrative Console. Some are commented out by default and need to
be uncommented to apply.

Property Description

pa.ui.idleExpirationInMinutes Defines, in minutes, the length of time until an inactive
administrative console times out. The default is 30
minutes.

pa.ui.maxExpirationInMinutes Defines, in minutes, the length of time until the
administrative console (active or inactive) times out. The
default is 240 minutes. This session expiration may be
disabled by setting this parameter to -1.

pa.ui.expirationWarningInMinutes Defines, in minutes, the length of time a warning
message displays prior to timing out the administrative
console session. The default is 1 minute.

Note: This parameter must be set to a
value that is less than the value set for
pa.ui.idleExpirationInMinutes.

pa.ui.legacyBrowserMode Adjusts Administrative console HTTP header
requirements to be interoperable with older web
browsers (Internet Explorer 9, etc).

pa.admin.user.password.regex Defines the regex that controls password complexity for
the Administration Console. The default value is

((?=.*\\d)(?=.*[a-z])(?=.*[A-Z]).
{8,20})

pa.admin.user.password.error.message Defines the message returned when password complexity
is not satisfied. The default value is Password must
be at least 8 characters in length,
contain one upper-case letter, one
lower-case letter and one digit..

 | Reference Information | 128

Property Description

pa.backup.filesToKeep Defines the number of backup files to preserve when the
Administrator authenticates to PingAccess. The default
value is 25.

Agent Properties

Property Description

agent.http.enabled Defines whether a STANDALONE or
CLUSTERED_ENGINE node listens for agent requests
on the port defined by the agent.http.port setting.
Default is true.

agent.http.port Defines the TCP port on which the engine listens for
agent requests. Default is 3030.

agent.http.secure Defines whether the engine is using HTTPS for agent
requests. Default is true.

agent.ssl.ciphers Defines the type of cryptographic ciphers available for
use with agent HTTPS ports.

agent.authz.header.required Defines whether PingAccess server should authenticate
agent requests using agent name and shared secret in the
vnd-pi-authz header. Default value is true. Setting this
to false is useful for POCs and/or debugging.

agent.cache.invalidated.response.durationDefines the duration in seconds that application
configuration changes are sent by PingAccess server to
agents using the vnd-pi-cache-invalidated header in agent
responses for the changed application. Default value is
900.

Auditing Settings

Property Description

pa.auditing.unknown.resource When set to true, this setting causes PingAccess to
audit requests for resources that are requested but not
mapped to an Application or Resource. This setting can
be used to help troubleshoot resource definition issues.
The default is false.

Availability Profile Defaults
Use the following properties to manage the default settings used for availability profiles. These values are also used to
provide high availability for PingFederate Back Channel Server configurations.

Property Description

pa.default.availability.ondemand.maxRetriesDefines the maximum number of retries before marking
the target system down. The default is 2.

 | Reference Information | 129

Property Description

pa.default.availability.ondemand.connectTimeoutDefines, in milliseconds, the amount of time to wait
before trying to connect to the remote host. The default
is 10000.

pa.default.availability.ondemand.retryDelayDefines, in milliseconds, the amount of time to wait after
a timeout before retrying the host. The default is 250.

pa.default.availability.ondemand.failedRetryTimeoutDefines, in seconds, the amount of time to wait before
retrying a failed host. The default is 60.

In addition, the following properties control the default configuration for client connection timeouts and the maximum
connections per site:

Property Description

pa.default.httpClientKeepAliveTimeout Defines, in milliseconds, the amount of time a client
connection is kept open to the PingAccess Engine. The
default is 30000.

Important: Ensure this value is not
larger than the idle timeout values defined
in the PingFederate configuration. Use
the following table to identify which
configuration file (located in <PF_HOME>/
pingfederate/etc/) and value is relevant
to your configuration:

Communication
Type

PingFederate
7.3

PingFederate
8.0

Administrative jetty-
admin.xml

MaxIdleTime

jetty-
admin.xml

IdleTimeout

Runtime jetty-
runtime.xml

MaxIdleTime

jetty-
runtime.xml

IdleTimeout

In a clustered environment, the idle
timeouts can be controlled using the
pa.default.httpClientKeepAliveTimeout
setting for the particular node type
(Administrative/Replica Administrative or
Engine).

pa.default.maxConnectionsPerSite Defines the maximum number of connections
PingAccess will open to the PingFederate Admin or
Engine. A value of -1 means there is no limit. The
default is -1.

Cluster Configuration Settings
Use the following properties when clustered engines are sharing information:

 | Reference Information | 130

Property Description

admin.polling.initialdelay Defines, in milliseconds, how long after the replica
administrative node starts up before it begins to poll the
administrative console for configuration information.
The default is 500.

admin.polling.delay Defines, in milliseconds, how long after the initial
query to the administrative console that the replica
administrative node begins querying for configuration
information. The default is every 2000 milliseconds.

pa.cluster.interprocess.communication Defines how the JGroups cluster communicates. none
(the default): Indicates that no communication is
configured between servers in the cluster. udp: Indicates
that the cluster uses Multicast communications to send
and receive information to and from multiple servers
at once. tcp: Indicates that the cluster uses Unicast
communications to send and receive information to and
from individual servers one at a time.

pa.cluster.auth.pwd Sets the password that each engine in the cluster must
use to authenticate when joining the group. This prevents
unauthorized engines from joining a cluster. (Values: any
string or blank)

pa.cluster.encrypt Indicates whether to encrypt network traffic sent between
engines in a cluster. (Values:true or false [default])

pa.cluster.bind.address Defines the IP address to which you bind the TCP or
UDP listener. The default is 127.0.0.1.

pa.cluster.bind.port The port associated with the bind-address property
above. The default is 7610. Whether this is a TCP
or UPD port depends on the value configured for the
pa.cluster.interprocess.communication
property (see above).

pa.cluster.failure.detection.bind.port Indicates the bind port of a server socket that is
opened on the given engine and used by other
engines as part of one of the cluster's failure-detection
mechanisms. This port is bound to the address
determined by pa.cluster.bind.address.
The default is 7710. Whether this is a TCP or
UDP port depends on the value configured for the
pa.cluster.interprocess.communication
property (see above).

pa.cluster.mcast.group.address Defines the IP address shared among engines in the
same cluster for UDP multicast communication; required
when the interprocess communication mode is set to
udp. (Range: 224.0.0.0 to 239.255.255.255;
note that some addresses in this range are reserved for
other purposes.) This property is not used for TCP. All
engines in a cluster must use the same address for this
property and the port property below. The default value
is 239.16.96.69.

 | Reference Information | 131

Property Description

pa.cluster.mcast.group.port Defines the UDP port associated with the
pa.cluster.mcast.group.address property
above. The default value is 7611

pa.cluster.serverstate.timeToIdleSecondsDefines, in seconds, how long metadata for the Rate
Limiting rule is maintained by a PingAccess Engine after
its last use. The default value is 86400.

pa.cluster.serverstate.staleEntryEvictionIntervalSecondsDefines, in seconds, how often a PingAccess
engine scans the Rate Limiting metadata to evaluate
metadata to be removed from the cache, based on the
pa.cluster.serverstate.timeToIdleSeconds
value. The default value is 60.

pa.cluster.serverstate.replicationIntervalMillisecondsDefines, in milliseconds, how often Rate Limiting
metadata is replicated within a subcluster. The default
value is 1000.

pa.cluster.tcp.discovery.initial.hosts Designates the initial hosts to be contacted for group
membership information when discovering and
joining the group; required when the interprocess
communication mode is set to tcp. The value is a
comma-separated list of host names (or IP addresses) and
ports. For example, 127.0.0.1[7602].

engine.polling.initialdelay Defines, in milliseconds, how long after the engine starts
up before it begins to poll the administrative console for
configuration information. The default is 500.

engine.polling.delay Defines, in milliseconds, how long after the initial query
to the administrative console that the engine begins
querying for configuration information. The default is
every 2000 milliseconds.

Configuration Database and Keystore Settings
Define the username and passwords for the PingAccess configuration database and the password for the cacerts
keystore.

Property Description

pa.jdbc.username Defines the username for accessing the PingAccess
configuration database. Default is sa.

pa.jdbc.password Defines the password for the database user of the
PingAccess configuration database. Default is
2Access.

pa.jdbc.filepassword Defines the password used to encrypt the PingAccess
configuration database. Default is 2Access.

pa.keystore.pw Defines the password for the $JAVA_HOME/lib/
security/cacerts keystore.

EHCache Configuration Properties
Use the following properties to manage the EHCache configuration:

 | Reference Information | 132

Property Description

pa.ehcache.PingFederateReferenceTokenCache.maxEntriesLocalHeapDefines the maximum number of entries in the local heap
for OAuth tokens. The default is 10000.

pa.ehcache.ServiceTokenCache.maxEntriesLocalHeapDefines the maximum number of entries in the local heap
for token mediation. The default is 10000.

pa.ehcache.ServiceTokenCache.timeToIdleSecondsDefines, in seconds, the time an entry in the token
mediation cache can be idle before it is expired. The
default is 1800 seconds.

pa.ehcache.ServiceTokenCache.timeToLiveSecondsDefines, in seconds, the maximum time an entry can
be in the token mediation cache. The default is 14400
seconds.

pa.ehcache.PATokenValidationCache.maxEntriesLocalHeapDefines the maximum number of entries in the local heap
for decryption of signed or encrypted PingAccess tokens.
The default is 10000.

pa.ehcache.PATokenValidationCache.timeToIdleSecondsDefines, in seconds, the time an entry in the token
validation cache can be idle before it is expired. The
default is 120 seconds.

pa.ehcache.PATokenValidationCache.timeToLiveSecondsDefines, in seconds, the maximum time an entry can
be in the token validation cache. The default is 300
seconds.

pa.ehcache.PFSessionValidationCache.maxEntriesLocalHeapDefines the maximum number of entries in the local heap
for the session validation cache. The default is 10000.

pa.ehcache.PFSessionValidationCache.timeToIdleSecondsDefines, in seconds, the time an entry in the session
validation cache can be idle before it is expired. The
default is 120 seconds.

pa.ehcache.PFSessionValidationCache.timeToLiveSecondsDefines, in seconds, the maximum time an entry can
be in the session validation cache. The default is 300
seconds.

EHCache is used for the cached information shared by nodes in PingAccess Subclusters.

Engine Properties

Property Description

engine.http.enabled Defines whether a STANDALONE or
CLUSTERED_ENGINE node listens for requests on the
ports defined by the Engine Listeners. Default is true.

engine.ssl.ciphers Defines the type of cryptographic ciphers available for
use with engine HTTPS ports.

Engine Properties File
An administrator uses PingAccess to generate and download the bootstrap.properties file when adding an engine to
a cluster (see Clustering). This file is specific to that engine and is stored with the engine in the /conf directory. The
engine uses this file to gain access to and communicate with the administrative console for configuration updates.

The following configuration properties are found in the bootstrap.properties file.

 | Reference Information | 133

Property Description

engine.admin.configuration.host Defines the host where the administrative console is
available. The default is localhost

engine.admin.configuration.port Defines the port where the administrative console is
running. The default is 9000

engine.admin.configuration.userid Defines the name of the engine.

engine.admin.configuration.keypair Defines an elliptic curve key pair that is in the JSON
Web Key (JWK) format.

engine.admin.configuration.bootstrap.truststore Defines the truststore, in JWK format, that is used for
communication with the administrative console.

POST Preservation Properties
The PingAccess POST Preservation feature preserves submitted POST form data that would otherwise be lost when
the user is forced to re-authenticate to an application as a result of a session timeout.

The form data is stored in local browser storage, and is then resubmitted after the re-authentication process completes.
This preserved form data can optionally be encrypted during the re-authentication process if desired.

Property Description

pa.oidc.post.preservation.enabled Enables functionality to preserve POST data if the client
is redirected to PingFederate for authentication. The
default value is true.

pa.oidc.post.preservation.encrypt When enabled, POST data preserved through a
redirection to PingFederate for authentication is
encrypted on the client to be used after the authentication
is successful. The default value is false.

Security Headers Properties
PingAccess can return response headers with every request that results in a response directly from PingAccess -
the Administrator Console, the engine, the agent, policy rule results, and when PingAccess replies to a request to a
protected resource that requires redirection to PingFederate for authentication.

Note: While intended primarily for security-related headers, this feature can also be used for arbitrary header
injection in these specific instances.

The following options are used to control which headers are returned in each of these scenarios:

Property Description

admin.headers Additional headers added to responses from
the PingAccess Administrator Console and the
Administrator API interface. Header values are defined
using the admin.header prefix.

agent.assets.headers Additional headers added to responses from PingAccess
Agents. Header values are defined using the
agent.assets.header prefix.

 | Reference Information | 134

Property Description

agent.error.headers Additional headers added to error responses from
PingAccess Agents. Header values are defined using the
agent.error.header prefix.

engine.assets.headers Additional headers added to responses from the
PingAccess Engine. Header values are defined using the
engine.assets.header prefix.

engine.error.headers Additional headers added to error responses from the
PingAccess Engine. Header values are defined using the
engine.error.header prefix.

rule.error.headers Additional headers added to responses that result from
policy rule results. Header values are defined using the
rule.error.header prefix.

pf.redirect.headers Additional headers added to the redirection
response that sends the client to PingFederate for
authentication. Header values are defined using the
pf.redirect.header prefix.

The value for each of these options is a comma-delimited list of headers to add to the response to the client.

The value to send with the header is defined using a property that follows the naming convention
<prefix>.<headername>. For example, in a default run.properties configuration, the following values
are defined as admin.headers:

admin.headers=X-Frame-Options,X-XSS-Protection,X-Content-Type-
Options,Strict-Transport-Security

The values for these headers are defined using the following configuration properties:

admin.header.X-Frame-Options=DENY
admin.header.X-XSS-Protection=1; mode=block
admin.header.X-Content-Type-Options=nosniff
#Enable only if the admin and engine use different host names
#admin.header.Strict-Transport-Security=max-age=31536000; includeSubDomains

These settings result in the following headers being set with every access to the PingAccess Administrator Console:

X-Frame-Options: DENY
X-XSS-Protection: 1; mode=block
X-Content-Type-Options: nosniff

Specific headers can be disabled by removing them from the admin.headers list or by commenting them out.
For example, while defined in the admin.headers property, the Strict-Transport-Security header is
commented out in the default configuration, so that header is not included in the response.

As noted in the comment, if the PingAccess Administrator Console and the PingAccess Engine use different external
host names, then the Strict-Transport-Security header should be enabled. When the same host name is
used for both of these, then the header should be disabled.

This header is only effective when a signed or trusted certificate is used for the Administrator Console. The generated
self-signed certificate cannot be used with this header.

Important: If the Strict-Transport-Security setting is enabled and a the host names are the same,
a user accessing both the Administrator Console and a protected application with the same host name will not
be able to access the protected application after accessing the Administrator Console.

 | Reference Information | 135

Server-Side Session Management Configuration Settings
Use the following properties to configure session management:

Property Description

pa.websession.updateTokenWindowInSecondsDefines, in seconds, how long before an active Web
Session token is updated. The default is every 60
seconds.

pa.websession.cachePFSessionStateInSecondsDefines, in seconds, how long PingAccess may
cache session state before re-validating it again with
PingFederate. The default is 60 seconds.

pa.websession.refreshSessionInterval Defines, in seconds, how frequently PingAccess contacts
PingFederate to update user data used in making policy
decisions.

Info: Changes to pa.websession.refreshSessionInterval and
pa.websession.cachePFSessionStateInSeconds apply to new web sessions as the default
value. Changes for existing sessions can be made using the Administrative API.

URL Filtering Settings
The following properties are available to control URL filtering of incoming requests:

Property Description

pa.interceptors.relativepath.decode.countNumber of times the URL is decoded to check for path
traversal characters. The default is 3.

pa.interceptors.relativepath.strict When this property is set to true, the incoming
URL is matched with the whitelist pattern defined in
pa.interceptors.relativepath.decode.regex.
All other request URLs are rejected. The default value is
false.

pa.interceptors.relativepath.decode.regexDefines the accepted URL regex pattern that
administrators can customize based on their needs. The
default value is:

[\p{Po}\p{N}\p{Z}\p{L}\p{M}\p{Zs}\./
_\-\\~()\{\}\[\]]*

See http://www.regular-expressions.info/unicode.html
for more details. This setting is only used when
pa.interceptors.relativepath.strict is
set to true.

http://www.regular-expressions.info/unicode.html

 | Release Notes | 136

Release Notes

PingAccess is a centralized point of security and access control for Web applications and APIs, serving applications
and other resources to clients outside an organization while still protecting internal interfaces from unauthorized
access. PingAccess sits in front of applications to protect them, enabling access control and identity-based auditing on
incoming requests. Featuring a lightweight, highly scalable architecture, PingAccess complements PingFederate with
centralized session management and URL-level authorization.

These release notes summarize the changes in current and previous product updates.

Enhancements for the 3.2 Release
PingAccess 3.2 includes the following enhancements and new functionality:

Access Control Enhancements
Rate Limiting

The Rate Limiting rule enables administrators to control the allowed request rate to a protected API or Web
Application based on the identity, source IP address, OAuth client, or resource being accessed.

New HTTP Request Rules
The HTTP Request Rule has been refactored into two rules: The HTTP Request Header and HTTP Request
Parameter rules. These rules provide additional flexibility for making policy decisions based on values passed
either in HTTP headers sent by a client, or based on form data submitted by a client. Both of these new rule types
can be configured to require multiple value matches.

Cross-Origin Resource Sharing (CORS)
Cross-Origin Resource Sharing is a method for allowing restricted resources on a web page to be requested from
a domain that is different from the domain that hosts the requested web page. This release of PingAccess adds an
access control rule that can be used to control this type of access request.

Engine Enhancements
HTTP and HTTPS Engine Listeners

When multiple engine listeners are defined, PingAccess now allows the administrator to define, on a per-engine
listener basis, whether the listener uses HTTP or HTTPS.

Multiple Access Token Manager Support
In instances where multiple Access Token Managers are configured in PingFederate to provide OAuth access
tokens for API applications, the aud OAuth parameter is populated with the user-requested URI to enable
PingFederate to select the proper Access Token Manager when PingAccess makes a validation request to
PingFederate.

POST Preservation
When a user submits a POST form and the authentication session has timed out, the user is redirected to
PingFederate in order to re-authenticate. The POST form data is now preserved through this redirection, and the
submitted form is automatically resubmitted after successful authentication. The preserved POST form data can
optionally be encrypted in the user's browser with this feature.

HTTP Header-Based Load Balancing
In addition to the Round Robin load balancing strategy, PingAccess now includes a header-based load balancing
strategy. This feature allows an external load balancer in the infrastructure to inject a header (such as X-
Target-Host) with a value for a hostname or IP address (defined as a target in the Site configuration) where
the request should be routed after PingAccess processes it.

 | Release Notes | 137

Improvements to HTTP Security Headers Set for PingAccess Admin/Engine/Agent Listeners
PingAccess now includes a number of HTTP Security Headers for connections to the Administrative User
Interface, Engine, and Agents. These headers are defined using options in run.properties, and additional
headers can be added if desired.

Auditing Enhancements
Auditing of Unknown Resource Requests

When a client requests a resource that is not known, PingAccess does not record the request in
the audit log for performance reasons. In PingAccess 3.2, the optional configuration property
pa.auditing.unknown.resource can be enabled in order to help troubleshoot resource definition issues.

Request Tracking
Audit logging now includes a default option to include either a Tracking ID or an Access Token ID along with
an Exchange ID to make it easier to follow the audit information for a particular session and exchange in the log
files.

Administrative Enhancements
JSON-Based Export/Import of PingAccess Configuration

The existing Backup section for the administrative user interface has been replaced with a JSON-based export/
import capability, making it simpler to duplicate an environment for development purposes. The JSON-
based import functionality also simplifies the procedure to restore an environment's backup by allowing the
administrator to use the administrative user interface.

Support for Wildcards in Virtual Hosts
Earlier releases of PingAccess permitted the use of a wildcard virtual host that would match any host (for
example, *:443), but wildcards used in conjunction with an existing domain name were not supported. This
feature adds the ability to specify a wildcard host with a domain (for example, *.example.com:443).

Usability Enhancements
Several administrative interface usability enhancements are in this release, including:

• Moved Options to Advanced Sections on Some Configuration Pages
• Restructured the Settings Page
• Added Pagination, List View, and Filtering Options to Improve Administrative UI Scalability
• Test Connections to Sites and PingFederate When Saving Related Configuration
• Added Cluster Status Display Information to Clustering Configuration Page

Administrative API Name-Based Search
When using the Administrative API at /pa-admin-api/v1/ to retrieve information about named objects
(for example, Agents or Engines), a name parameter can be specified to retrieve the object with the exact name
specified.

Known Issues
• Internet Explorer and Firefox do not correctly support the HTML5 time tag. When using the Time Range rule,

enter time in 24-hour format.
• PingFederate does not appear as an Authorization Server in Applications unless it is configured as an OAuth

Resource server to validate OAuth access tokens. See the PingFederate Settings.
• When installing PingAccess as a Windows service using Windows PowerShell and Java 8, the error message

"Could not find or load main class" can be safely ignored.
• When upgrading from PingAccess 3.0.3, the PingAccess Upgrade Utility may throw a JdbcSQLException.

This can be worked around by restarting the PingAccess Administrative Console for the 3.0.3 installation and re-
running the upgrade utility.

• POST Preservation is not supported with Safari Private Browsing.

 | Release Notes | 138

Upgrading from an earlier PingAccess 3.2 release
If you have disabled Basic Authentication, navigate to Settings > System > Admin Authentication, then slide the
Basic Authentication slider to ON to enable basic authentication for the PingAccess Administrative API interface.

Note: For upgrades from releases earlier than 3.2, see Upgrading from PingAccess 2.1 and Later on page 32.

To upgrade from PingAccess 3.2 through 3.2.5 to PingAccess 3.2.6, perform the following steps:

1. Download a configuration archive by using your browser to open https://<PA_HOST>:<ADMIN_PORT>/
pa-admin-api/v1/backup. When prompted, enter your basic authentication credentials.
A configuration backup named pa-data-<date>.<time>.zip downloads.

2. Copy the downloaded configuration archive and the PingAccess 3.2.6 distribution zip file to the server being
upgraded.

3. Unzip the PingAccess 3.2.6 distribution zip file to a new installation folder.
4. In the new <PA_HOME> directory, unzip the zip file you copied in step 2.
5. Copy pingaccess.lic from the earlier PingAccess 3.2.x installation to the conf folder in the new 3.2.6

installation.
6. Optional: For each cluster engine node that is being upgraded, perform the following steps:

a) Copy the PingAccess 3.2.6 distribution zip file to the cluster engine node.
b) Unzip the PingAccess 3.2.6 distribution zip file to a new directory.
c) Copy the configuration files from the PingAccess 3.2 conf directory to the new PingAccess 3.2.6 conf

directory.
7. Shut down the older running PingAccess instance.
8. Conditional: If PingAccess is clustered, shut down the clustered engine nodes.
9. Start the new PingAccess environment.

Complete Change List by Released Version
PingAccess 3.2.6 addresses the following issues:

POST Preservation
PingAccess no longer throws an exception when POST preservation data cannot be retrieved.

PUT requests with On-Demand availability profiles
PUT requests where the request body is no longer available after an initial failure are no longer retried.

Server Name Indication
Corrected a server_name and host data/header mismatch when using SNI.

Non-string Subject Alternative Name values in imported keypairs
Enhanced handling of values in imported keypairs to handle non-string SANs.

Admin console not accessible after upgrade
Corrected an issue where an upgrade could result in the administrative console not being accessible.

Security fix
Fixed a security vulnerability (SECADV012).

PingAccess 3.2.6 - February, 2016

PingAccess 3.2.6 addresses the following issues:

POST Preservation
PingAccess no longer throws an exception when POST preservation data cannot be retrieved.

 | Release Notes | 139

PUT requests with On-Demand availability profiles
PUT requests where the request body is no longer available after an initial failure are no longer retried.

Server Name Indication
Corrected a server_name and host data/header mismatch when using SNI.

Non-string Subject Alternative Name values in imported keypairs
Enhanced handling of values in imported keypairs to handle non-string SANs.

Admin console not accessible after upgrade
Corrected an issue where an upgrade could result in the administrative console not being accessible.

Security fix
Fixed a security vulnerability (SECADV012).

PingAccess 3.2.5 - December, 2015

PingAccess 3.2.5 addresses the following issue:

Issues resolved:
Corrected a resource allocation issue when using PingAccess agents configured with caching enabled in the
agent.

PingAccess 3.2.4 - December, 2015

PingAccess 3.2.4 addresses the following issues:

Authentication loop with cached user attributes
Resolved an issue where a misconfiguration in the web session user attribute caching settings could cause an
authentication loop.

Security updates
Fixed a few minor potential security issues.

Improved expiration handling for AccessToken validation during API flow
When validating an access token in the API flow which did not contain an expires_in value, a null pointer
exception would be thrown.

PingAccess 3.2.3 - October, 2015

PingAccess 3.2.3 addresses the following issues:

Security issues
Two minor potential security issues are addressed in this release.

Fixed upgrade utility SSLHandShakeException failures with Java 8 update 51 or later
When updating from versions of PingAccess that use deprecated RC4 ciphers, the PingAccess Upgrade Utility
would fail.

Fixed potential issues with POST preservation in certain configuration scenarios
In certain rare cases, POST preservation would fail as a result of a configuration error. Additional checks have
been added to prevent these configuration errors from occurring.

Fixed issue that could lead to unexpected request failures when using token mediation
If a protected application relies on cookies being sent with the mediated token, if the token mediation flow needed
to retry, the additional cookies delivered with the token would be removed, resulting in unexpected application
failures.

Fixed issue where the Subject Alternative Name is missing from the CSR for key pairs created in PingAccess
When a key pair was generated in PingAccess and a Certificate Signing Request was issued, the CSR was
missing the Subject Alternative Names.

 | Release Notes | 140

Improvements to the install-service.bat script
When executed from a directory with a space in the path, the install-service.bat script would fail. This
script has been updated to correct the issue.

Made the dbfilepasswd and dbuserpasswd scripts more robust
These scripts now run from paths containing spaces, and use the Java executable identified by JAVA_HOME.

Added validation to prevent a potential redirect loop
When a web session cookie domain is configured incorrectly, a user's browser could end up in an endless
redirection loop. PingAccess now includes additional validation to prevent this misconfiguration.

PingAccess 3.2.2 - August, 2015

PingAccess 3.2.2 addresses the following issues:

The Admin API should require authnReqListId be set to 0 for an anonymous user
Authentication requirements should not be allowed to be added to an anonymous resource. The PingAccess UI
enforces this constraint, but previously the Admin API did not.

Configuration backup archive not created when using Admin SSO
When an administrator user logs into the administrative console using SSO authentication, PingAccess does not
create a configuration archive. The archive is created successfully when the administrator logs in using basic
authentication.

Unable to reorder PingAccess rules inside Rule Sets in UI
Making a change in the order of rules within a Rule Set produces a success message, but after navigating to
another page and returning to the Policy page, the rules are displayed in the previous order, as it was before the
change.

JWT signature error produced when integrating with PingFederate 7.2
When using unsigned access tokens with PingAccess 3.2, authentication using the OpenID Connect
authentication flow may fail, logging the following message in <PA_HOME>/log/pingaccess.log when
logging is set to DEBUG:

The JWT has no signature but the JWT Consumer is configured to require one

After Admin Console cookie expiration, the administrator is prompted for basic authentication instead of SSO
The problem occurs when Admin SSO is enabled and the administrator is logged into the Admin Console, but the
access cookie has expired, for example, due to no user activity for a certain time period. In this case, the Admin
Console directs the user to the basic login prompt instead of to PingFederate for reauthentication using SSO.

Concealed plugin fields are not handled correctly in the PingAccess UI
When entering values in the Basic Authentication Site Authenticator form, if username and password values are
filled and then the username is edited again, the password value is saved as null rather than the password value
entered. This issue affects any plugin with a concealed field such as a password field.

New login required after change to the Admin SSO page even though SSO is disabled
If the administrator changes the Client ID value in the Admin SSO page, but does not select the Enabled
checkbox, the administrator is required to authenticate again. A new login should be required only if Admin SSO
is enabled.

Admin SSO authentication fails when PingAccess 3.2 is installed with PingFederate 7.2
When PingAccess 3.2 is used with PingFederate 7.2, Admin SSO does not work.

PingAccess load balancing not enforcing stickiness
In some cases, PingAccess sticky sessions do not work with PingAccess load balancing.

Corrected a potential security vulnerability
Refer to the Security Advisory SECADV010 on the Customer Portal for more information.

https://ping.force.com/Support

 | Release Notes | 141

PingAccess 3.2.1 - July, 2015

PingAccess 3.2.1 includes the following fixes:

Stale postprsv Cookie Causes PingAccess Internal Server Error Response
In certain circumstances when using POST Preservation, the postprsv cookie was not properly maintained,
resulting in the cookie not containing the expected information.

Intermittent 403 Forbidden Responses when Browser Pre-fetches favicon.ico
In some instances, a browser might attempt to retrieve favicon.ico before a session cookie was issued,
resulting in access being denied to the resource.

PingAccess 3.2 - June, 2015

PingAccess 3.2 includes the following enhancements and new functionality:

Access Control Enhancements
Rate Limiting

The Rate Limiting rule enables administrators to control the allowed request rate to a protected API or Web
Application based on the identity, source IP address, OAuth client, or resource being accessed.

New HTTP Request Rules
The HTTP Request Rule has been refactored into two rules: The HTTP Request Header and HTTP Request
Parameter rules. These rules provide additional flexibility for making policy decisions based on values passed
either in HTTP headers sent by a client, or based on form data submitted by a client. Both of these new rule types
can be configured to require multiple value matches.

Cross-Origin Resource Sharing (CORS)
Cross-Origin Resource Sharing is a method for allowing restricted resources on a web page to be requested from
a domain that is different from the domain that hosts the requested web page. This release of PingAccess adds an
access control rule that can be used to control this type of access request.

Engine Enhancements
HTTP and HTTPS Engine Listeners

When multiple engine listeners are defined, PingAccess now allows the administrator to define, on a per-engine
listener basis, whether the listener uses HTTP or HTTPS.

Multiple Access Token Manager Support
In instances where multiple Access Token Managers are configured in PingFederate to provide OAuth access
tokens for API applications, the aud OAuth parameter is populated with the user-requested URI to enable
PingFederate to select the proper Access Token Manager when PingAccess makes a validation request to
PingFederate.

POST Preservation
When a user submits a POST form and the authentication session has timed out, the user is redirected to
PingFederate in order to re-authenticate. The POST form data is now preserved through this redirection, and the
submitted form is automatically resubmitted after successful authentication. The preserved POST form data can
optionally be encrypted in the user's browser with this feature.

HTTP Header-Based Load Balancing
In addition to the Round Robin load balancing strategy, PingAccess now includes a header-based load balancing
strategy. This feature allows an external load balancer in the infrastructure to inject a header (such as X-
Target-Host) with a value for a hostname or IP address (defined as a target in the Site configuration) where
the request should be routed after PingAccess processes it.

Improvements to HTTP Security Headers Set for PingAccess Admin/Engine/Agent Listeners
PingAccess now includes a number of HTTP Security Headers for connections to the Administrative User
Interface, Engine, and Agents. These headers are defined using options in run.properties, and additional
headers can be added if desired.

 | Release Notes | 142

Auditing Enhancements
Auditing of Unknown Resource Requests

When a client requests a resource that is not known, PingAccess does not record the request in
the audit log for performance reasons. In PingAccess 3.2, the optional configuration property
pa.auditing.unknown.resource can be enabled in order to help troubleshoot resource definition issues.

Request Tracking
Audit logging now includes a default option to include either a Tracking ID or an Access Token ID along with
an Exchange ID to make it easier to follow the audit information for a particular session and exchange in the log
files.

Administrative Enhancements
JSON-Based Export/Import of PingAccess Configuration

The existing Backup section for the administrative user interface has been replaced with a JSON-based export/
import capability, making it simpler to duplicate an environment for development purposes. The JSON-
based import functionality also simplifies the procedure to restore an environment's backup by allowing the
administrator to use the administrative user interface.

Support for Wildcards in Virtual Hosts
Earlier releases of PingAccess permitted the use of a wildcard virtual host that would match any host (for
example, *:443), but wildcards used in conjunction with an existing domain name were not supported. This
feature adds the ability to specify a wildcard host with a domain (for example, *.example.com:443).

Usability Enhancements
Several administrative interface usability enhancements are in this release, including:

• Moved Options to Advanced Sections on Some Configuration Pages
• Restructured the Settings Page
• Added Pagination, List View, and Filtering Options to Improve Administrative UI Scalability
• Test Connections to Sites and PingFederate When Saving Related Configuration
• Added Cluster Status Display Information to Clustering Configuration Page

Administrative API Name-Based Search
When using the Administrative API at /pa-admin-api/v1/ to retrieve information about named objects
(for example, Agents or Engines), a name parameter can be specified to retrieve the object with the exact name
specified.

PingAccess 3.1 - February, 2015

PingAccess 3.1 includes enhancements and new functionality for the Session Management capabilities, the
PingAccess Engine, and the Administrative interface.

Session Management
Session Attribute Updates and Revocation

Administrators can now configure PingAccess to periodically query PingFederate to update attributes associated
with the session, and to terminate the session based on a determination by PingFederate that the user no longer
meets the criteria used to issue a token. For example, if PingFederate is configured to return the user's attributes
only if the user account is enabled, disabling the user account can now trigger a session revocation. Additionally,
if a user is removed from a group that grants them access to an application, access can be denied for a current
session.

Support for Large Attribute Data
PingAccess now has the ability to cache user attribute data that previously was limited to the browser maximum
cookie size. When this feature is enabled, potentially large attribute values - such as group memberships - can be
used in policy decisions.

 | Release Notes | 143

OpenID Connect / OAuth 2.0 Form Post Response Mode
Support has been added for the emerging OAuth V2 Form Post Response Mode standard. If you are upgrading
from an earlier release of PingAccess, web sessions using the existing POST method will be migrated to
x_post.

Engine
HTTP Request Configuration Source Handling

To better integrate PingAccess with configurations using reverse proxies and external load balancers, support has
been added to support arbitrary IP Source, Host Source, and Protocol Source headers. This allows headers such
as the X-Forwarded-For header to be injected by those reverse proxies in order to preserve information about
the originating host IP address, hostname, and protocol source, in order to be able to use that information to make
policy decisions. In addition, the originating host IP address is recorded in the audit logs.

HTTP Response Body Content Rewriting
The new Rewrite Content Rule on page 49 allows arbitrary content rewriting to be performed on outbound
content. The content rewriting functionality can be used, for example, to rewrite URL text in HTTP responses so
links a user might click on will use the external hostname for the Application rather than an internal name. This
feature can also be constrained to particular content-types, allowing different rules to be tailored to the response
Content-Type header.

Multiple Engine Ports
The PingAccess Engine listener can now listen on multiple ports, providing greater configuration flexibility.

Specify Different PingFederate Runtime Engines for Backchannel Calls
PingAccess can now use separate hostnames and ports to perform behind-the-scenes communication with
PingFederate, providing greater flexibility in managing traffic between the two products. If more than one
backchannel communication is set up, a built-in availability profile is used to provide failover.

Administration
Configurable Signature Algorithm Generated Key Pairs

When generating a key pair, the Signature Algorithm can now be selected, and the options available are based
on the chosen Key Algorithm.

Remove Resource Ordering
The determination of the "most specific" match of an application resource path has been simplified, removing the
need for manual ordering of resources within an application. PingAccess now evaluates this based on the length
of the path requested and matching that to the Path Prefixes defined in the Application. This change also removes
the PATCH method from the /applications/{id}/resources Administrative API endpoint, since that
method was used to update the order of Resources in an Application.

Authentication Requirements for Admin SSO
Authentication Requirements can now be specified for administrator Single Sign-On. This can be used to ensure
administrative users log in with stronger forms of authentication than just a username and password.

PingAccess 3.0 R2 - October, 2014

This release introduces the following new features:

Backup Admin Console Nodes
Provides the ability, in a clustered environment, to create a backup administrative node that the administrator can
manually fail over to in the event of a catastrophic failure of the primary administrative node.

Failover and Load Balancing for Sites
Adds new functionality to provide failover and load balancing to multiple backend target servers without
requiring a load balancer.

http://openid.net/specs/oauth-v2-form-post-response-mode-1_0.html

 | Release Notes | 144

Ability to Ignore HTTPS Certificate Errors
Reduces certificate management burden for internal servers in a controlled environment by allowing the
administrator to ignore certificate errors for backend connections, such as connections to Site targets.

Heartbeat Endpoint Enhancements
Enhances the monitoring capabilities by adding functionality to the heartbeat to return a configurable list of
performance metrics as a JSON payload for consumption by third party monitoring tools.

Logging Enhancements
Adds logging options for rewritten cookies as well as cookies passed or proxied, and realign logged information
with appropriate log levels.

PingAccess 3.0.3 - November, 2014

This release addresses the following issue:

• Corrected a potential security issue in Identity Mappings (SECBL006)

PingAccess 3.0.2 - September, 2014

This release addresses the following issue:

• Resolved an issue with Session Validation causing the token mediator to stop working.

PingAccess 3.0.1 - August, 2014

This release addresses the following issues:

• Resolved an issue with token validation when using OAuth Admin API Authentication
• Corrected handling of PingFederate Runtime Base Path setting
• OIDC callback endpoint improvements to support front-end load balancers listening on a different port than the

PingAccess Engine

PingAccess 3.0 - July, 2014
PingAccess Agents

Added PingAccess Agents to provide additional architectural flexibility with an agent based deployment model.
Session Management enhancements

Web session management has been enhanced to offer additional security for end user-driven logout use cases.
Add-on Java SDK

New PingAccess add-on Java SDK has been introduced.
TLS Server Name Indication support

HTTPS listener configuration has been extended to support the TLS Server Name Indication (SNI) extension.
Request/Response Time Auditing

Additional fields have been added to the engine audit logs for performance monitoring and capacity planning
purposes - total request processing time and back-end proxy response time.

Administration enhancements
Many enhancements have been made to improve the administration and modeling of configuration in PingAccess.

PingAccess 2.1.4 – June 2014

• Resolved an issue with Resource Ordering in the Administrative Console.
• improved interoperability with backend applications introduced by URL filtering in PingAccess 2.1.3.

 | Release Notes | 145

PingAccess 2.1.3 - May 2014

• Fix a potential security issue that affects deployments that have varying policy applied across a single virtual
server.

PingAccess 2.1.2 – April 2014

• Allow for specifying the base path for PingFederate. Useful when PingFederate is behind a reverse proxy.

PingAccess 2.1.1 – March 2014

• Fix Identity Mediation back channel communication issue.
• Fix Web Session cookie attribute handling.

PingAccess 2.1 - December 2013

• Ability to encrypt the PA session token.
• Sites can have multiple Site Authenticators configured.
• Added Authentication Requirements policy to allow step-up authentication to a Resource.
• Ability to specify “Any” or “All” processing to policy rules within a rule set.
• Multiple Web Sessions can be configured to scope a PingAccess session for a specific set of Resources.
• Added OpenID Connect Basic Profile flow for obtaining claims from PingFederate.
• Enhanced Audit log options to database and Splunk.

PingAccess 2.0.1 - October 2013

• Fixed well-known HTTP/S port issue
• Fixed a potential security issue with the Web Session Header Site Authenticator

PingAccess 2.0 - September 2013

• Initial General Availability (GA) release

PingAccess 1.0 - April 2013

• Limited release

	Contents
	Overview and QuickStart Guide
	PingAccess Overview
	Using Virtual Hosts
	Application and Resource Evaluation
	WAM Session Initiation
	Token Mediation
	Server-Side Session Management
	Using the OAuth Authorization Server

	Downloading and Installing the QuickStart Demo Application
	About the PingAccess Quickstart Demo App
	Download and Install the Quickstart Application

	PingAccess Administrator's Guide
	System Tasks
	Installation and Intial Setup
	System Requirements
	Port Requirements
	Installing the Oracle JDK
	Installing PingAccess
	Change Configuration Database Passwords
	Starting and Stopping PingAccess
	Starting PingAccess
	Stopping PingAccess

	Running PingAccess for the First Time
	Running PingAccess as a Service
	Running PingAccess as a Linux Service
	Configuring PingAccess to Run as a Linux Service
	Configuring Multiple Instances of PingAccess as Linux Services
	Removing the PingAccess Linux Service
	Running PingAccess as a Windows Service
	Configuring PingAccess to Run as a Windows Service
	Removing the PingAccess Windows Service

	Uninstalling PingAccess

	Clustering
	Configure a PingAccess Cluster
	Configure PingAccess Subclusters
	Manually Fail Over to the Replica Administrative Node
	Reinstating a Replica Administrative Node after Failing Over

	Configuring Logging
	Security Audit Logging
	Logging
	Configuring Log Levels
	Configuring a Class or Package Log Level
	Enabling Cookie Logging
	Append Log Messages to Syslog and the Console
	Writing Logs to Other Formats
	Writing Audit Logs for Splunk
	Writing Logs to Databases

	Accessing PingAccess Interfaces
	Accessing the PingAccess Administrative Console
	Administrative Console Elements

	Accessing the PingAccess Administrative API
	Accessing the Interactive Administrative API Documentation

	Performance Tuning
	Java Tuning
	Modify the Java Heap Size
	Modify the Java Heap Size for Linux Service
	Modify the Java Heap Size for Windows Service

	Garbage Collector Configuration
	Resource Pools
	Acceptor Threads
	Worker Threads
	Backend Server Connections

	Logging and Auditing
	Logging
	Auditing

	Agent Tuning

	Upgrading PingAccess
	Upgrading from PingAccess 2.1 and Later
	Upgrading a PingAccess Cluster
	Completing the Upgrade
	Performing Post-Upgrade Tasks

	Restore a PingAccess Configuration Backup

	Applications
	Configure an Application
	Configure a Resource
	Configure a Resource

	Sites & Agents
	Sites
	Create a Site
	Edit a Site
	Delete a Site

	Site Authenticators
	Configure Site Authenticators
	Basic Authentication Site Authenticator
	Mutual TLS Site Authenticator
	Token Mediator Site Authenticator

	Agents

	Policy Manager
	Rules
	Create a New Rule
	Cross-Origin Request Rule
	Rewrite Rules Overview
	Rewrite Content Rule
	Rewrite Cookie Domain Rule
	Rewrite Cookie Path Rule
	Rewrite Response Header Rule
	Rewrite URL Rule

	Groovy Script Rule
	HTTP Request Header Rule
	HTTP Request Parameter Rule
	Network Range Rule
	OAuth Attribute Value Rule
	OAuth Groovy Script Rule
	OAuth Scope Rule
	Configure an OAuth Scope Rule
	OAuth Rule Advanced Fields

	Rate Limiting Rule
	Time Range Rule
	Web Session Attribute Rule

	Edit a Rule
	Delete a Rule
	Advanced Fields for Rules
	Error Handling Fields for OAuth Rules

	Rule Sets
	Create a Rule Set
	Edit a Rule Set
	Delete a Rule Set

	Application
	Apply Rules and Rule Sets to an Application
	Apply a Rule Set
	Apply a Rule
	Edit Rules and Rule Sets for Application

	Settings
	Access
	Authentication Requirements
	Configure an Authentication Requirement List
	Edit an Authentication Requirements List
	Delete an Authentication Requirements List

	Identity Mappings
	Virtual Hosts
	Web Sessions
	Application Scoped Web Sessions
	Create a Web Session
	Edit a Web Session
	Delete a Web Session
	Configure Server-Side Session Management
	Configure PingFederate for Session Management
	Configure PingFederate For User-Initiated Single Logout
	Configure PingAccess for Server-Side Session Management

	Networking
	Availability Profiles
	Configure a New Availability Profile
	Edit an Existing Availability Profile

	HTTP Requests
	Configure an Alternative IP Source Header
	Configure an Alternative Host Source Header
	Configure an Alternative Protocol Source Header

	Listeners
	HTTPS Listeners
	Assign a Key Pair to a Listener
	Engine Key Pairs
	Assign a Key Pair to a Virtual Host

	Engine Listeners
	Define an Engine Listener

	Load Balancing Strategies
	Configure a Load Balancing Strategy
	Edit a Load Balancing Strategy

	Security
	Certificates
	Import a Certificate
	Delete a Certificate
	Add Certificate to a Trusted Certificate Group
	Create a Trusted Certificate Group
	Edit a Trusted Certificate Group
	Remove Certificate from a Trusted Certificate Group
	Delete a Trusted Certificate Group

	Key Pairs
	Import an Existing Key Pair
	Generate a New Key Pair
	Generate a Certificate Signing Request
	Import a Certificate Signing Request Response
	Download a Certificate
	Delete a Key Pair

	System
	Admin Authentication
	Basic Authentication
	Single Sign-On (SSO) Authentication
	Configure SSO Authentication in PingAccess

	Configure API Authentication

	Configuration Export/Import
	Export PingAccess Configuration
	Import PingAccess Configuration

	Clustering
	Configure Cluster Prerequisites
	Define the Primary Administrative Node
	Configure the Replica Administrative Node
	Configure an Engine
	Edit an Engine
	Remove an Engine's Access to the Administrative Console
	Remove an Engine

	PingFederate
	Configure PingFederate Runtime
	Configure PingFederate Administration
	Configure PingFederate for PingAccess SSO
	Configure the OAuth Resource Server

	PingAccess Deployment Guide
	Use Cases and Deployment Architecture
	Deploying for Gateway Web Access Management
	Deploying for Agent Web Access Management
	Deploying for Gateway API Access Management
	Deploying for Auditing and Proxying

	Configuration by Use Case
	Web Access Management Gateway Deployment
	Web Access Management Agent Deployment
	API Access Management Gateway Deployment
	Auditing and Proxying Gateway Deployment

	Web Access Management
	Choosing Between an Agent or Gateway Deployment
	Web Access Management Gateway Proof Of Concept Deployment Architecture
	Web Access Management Gateway Production Deployment Architecture
	Web Access Management Agent Proof Of Concept Deployment Architecture
	Web Access Management Agent Production Deployment Architecture

	API Access Management Proof of Concept Deployment Architecture
	API Access Management Production Deployment Architecture
	Auditing and Proxying Proof of Concept Deployment Architecture
	Auditing and Proxying Production Deployment Architecture

	Customization and Development
	Customize User-Facing Pages
	PingAccess Endpoints
	Heartbeat Endpoint
	OpenID Connect Endpoints
	Administrative API Endpoints

	Groovy
	Groovy
	Groovy Scripts
	Body Object
	Exchange Object
	Header Object
	Method Object
	OAuth Token Object
	PolicyContext Object
	Request Object
	Response Object
	Groovy Script Examples
	Matchers

	PingAccess Addon SDK for Java
	Preface
	Introduction
	Getting Started With the SDK
	SDK Directory Structure
	SDK Prerequisites
	How to Install the SDK Samples

	Creating your own Plugins
	Creating a Rule
	Creating a Site Authenticator

	Implementation Guidelines

	PingAccess Agent SDK for Java
	Preface
	Introduction
	Getting Started with the PingAccess Agent SDK for Java
	Agent SDK Directory Structure
	Agent SDK Prerequisites
	How to Install the servlet filter sample

	PingAccess Agent SDK for Java Release History

	Reference Information
	Admin Properties
	Admin and Engine Cluster Settings
	Administrative Console Settings
	Agent Properties
	Auditing Settings
	Availability Profile Defaults
	Cluster Configuration Settings
	Configuration Database and Keystore Settings
	EHCache Configuration Properties
	Engine Properties
	Engine Properties File
	POST Preservation Properties
	Security Headers Properties
	Server-Side Session Management Configuration Settings
	URL Filtering Settings

	Release Notes
	Enhancements for the 3.2 Release
	Known Issues
	Upgrading from an earlier PingAccess 3.2 release
	Complete Change List by Released Version
	PingAccess 3.2.6 - February, 2016
	PingAccess 3.2.5 - December, 2015
	PingAccess 3.2.4 - December, 2015
	PingAccess 3.2.3 - October, 2015
	PingAccess 3.2.2 - August, 2015
	PingAccess 3.2.1 - July, 2015
	PingAccess 3.2 - June, 2015
	PingAccess 3.1 - February, 2015
	PingAccess 3.0 R2 - October, 2014
	PingAccess 3.0.3 - November, 2014
	PingAccess 3.0.2 - September, 2014
	PingAccess 3.0.1 - August, 2014
	PingAccess 3.0 - July, 2014
	PingAccess 2.1.4 – June 2014
	PingAccess 2.1.3 - May 2014
	PingAccess 2.1.2 – April 2014
	PingAccess 2.1.1 – March 2014
	PingAccess 2.1 - December 2013
	PingAccess 2.0.1 - October 2013
	PingAccess 2.0 - September 2013
	PingAccess 1.0 - April 2013

